دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Klein S., Nellis G. سری: ISBN (شابک) : 0521195705 ناشر: CUP سال نشر: 2011 تعداد صفحات: 1102 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Thermodynamics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ترمودینامیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover......Page 1
THERMODYNAMICS......Page 3
Tiltle......Page 5
Copyright......Page 6
CONTENTS......Page 7
PREFACE......Page 17
ACKNOWLEDGMENTS......Page 19
NOMENCLATURE......Page 21
Greek Symbols......Page 25
Subscripts......Page 26
Other Notes......Page 28
THERMODYNAMICS......Page 29
1.1 Overview......Page 31
1.2 Thermodynamic Systems......Page 33
1.3.2 Measurable and Derived Properties......Page 34
1.3.4 Internal and External Properties......Page 35
1.4 Balances......Page 36
1.5 Introduction to EES (Engineering Equation Solver)......Page 38
1.6.1 The SI and English Unit Systems......Page 41
1.6.2 Working with Units in EES......Page 44
1.7.2 Pressure......Page 54
1.7.3 Temperature......Page 56
A. Balances......Page 58
B. Introduction to EES......Page 59
C. Dimensions and Units......Page 60
D. Pressure, Volume and Temperature......Page 61
2.1 Equilibrium and State Properties......Page 64
2.2 General Behavior of Fluids......Page 66
2.3.1 Saturated Liquid and Vapor......Page 71
2.3.2 Superheated Vapor......Page 77
Interpolation......Page 79
2.3.3 Compressed Liquid......Page 80
2.4.1 Thermodynamic Property Functions......Page 81
2.4.2 Arrays and Property Plots......Page 89
2.5 The Ideal Gas Model......Page 99
2.6 The Incompressible Substance Model......Page 108
A. Property Data from Tables......Page 115
B. Property Data from EES......Page 119
C. The Ideal Gas and Incompressible Fluid Models......Page 121
3.1 Conservation of Energy Applied to a Closed System......Page 122
3.2.1 Kinetic Energy......Page 123
3.3 Specific Internal Energy......Page 124
3.3.1 Property Tables......Page 125
3.3.2 EES Fluid Property Data......Page 126
3.3.3 Ideal Gas......Page 131
3.3.4 Incompressible Substances......Page 136
3.4 Heat......Page 140
3.4.1 Heat Transfer Mechanisms......Page 141
3.4.2 The Caloric Theory......Page 145
3.5 Work......Page 146
3.6 What is Energy and How Can you Prove that it is Conserved?......Page 163
Problems......Page 167
A. Heat and Work......Page 168
B. Closed System Energy Balances......Page 171
C: Advanced Problems......Page 178
4.1 General Statement of the First Law......Page 181
4.2.1 Property Tables......Page 185
4.2.3 Ideal Gas......Page 186
4.3 Methodology for Solving Thermodynamics Problems......Page 189
4.4.1 Turbines......Page 193
4.4.2 Compressors......Page 195
4.4.3 Pumps......Page 196
4.4.5 Diffusers......Page 197
4.4.7 Heat Exchangers......Page 198
4.5 Analysis of Open Unsteady Systems......Page 205
A: Thermodynamic Analyses of Steady-State Applications......Page 217
B:Thermodynamic Analyses of Open Unsteady Systems......Page 221
C:Advanced Problems......Page 229
5.1 The Second Law of Thermodynamics......Page 234
5.1.2 Continuous Operation......Page 237
5.1.3 Thermal Reservoir......Page 238
5.1.4 Equivalence of the Second Law Statements......Page 239
5.2 Reversible and Irreversible Processes......Page 240
5.3 Maximum Thermal Efficiency of Heat Engines and Heat Pumps......Page 247
5.4 Thermodynamic Temperature Scale......Page 250
5.5 The Carnot Cycle......Page 255
Process 2-3: Adiabatic expansion......Page 258
Cycle efficiency......Page 260
A: Maximum Efficiency......Page 262
B: Advanced Problems......Page 264
6.1 Entropy, a Property of Matter......Page 267
6.2 Fundamental Property Relations......Page 271
6.3.2 EES Fluid Property Data......Page 273
6.3.3 Entropy Relations for Ideal Gases......Page 275
6.4 A General Statement of the Second Law of Thermodynamics......Page 279
6.5.1 Entropy Generation......Page 287
6.5.3 Choice of System Boundary......Page 290
System Encloses all Irreversible Processes......Page 291
System Excludes all Irreversible Processes......Page 294
6.6.1 Turbine Efficiency......Page 296
6.6.2 Compressor Efficiency......Page 307
6.6.3 Pump Efficiency......Page 317
6.6.4 Nozzle Efficiency......Page 322
6.6.5 Diffuser Efficiency......Page 330
6.6.6 Heat Exchanger Effectiveness......Page 335
Heat Exchangers with Constant Specific Heat Capacity......Page 342
A. Entropy Balances......Page 352
B. Isentropic Efficiencies and Heat Exchangers......Page 364
C. Advanced Problems......Page 376
7.1 Definition of Exergy and Second Law Efficiency......Page 380
7.2 Exergy of Heat......Page 381
7.3 Exergy of a Flow Stream......Page 385
7.4 Exergy of a System......Page 391
7.5 Exergy Balance......Page 397
7.6 Relation Between Exergy Destruction and Entropy Generation......Page 408
A. Exergy and Exergy Balances......Page 409
B. Advanced Problems......Page 412
8.1 The Carnot Cycle......Page 415
8.2.1 The Ideal Rankine Cycle......Page 418
Effect of Boiler Pressure......Page 425
Effect of Heat Sink Temperature......Page 427
8.2.2 The Non-Ideal Rankine Cycle......Page 429
Reheat......Page 435
Regeneration......Page 440
8.3 The Gas Turbine Cycle......Page 456
8.3.1 The Basic Gas Turbine Cycle......Page 457
Effect of Air-Fuel Ratio......Page 463
Effect of Pressure Ratio and Turbine Inlet Temperature......Page 464
Reheat and Intercooling......Page 467
Recuperation......Page 472
Turbojet Engine......Page 482
Turbofan Engine......Page 488
8.3.4 The Combined Cycle and Cogeneration......Page 497
8.4.1 The Spark-Ignition Reciprocating Internal Combustion Engine......Page 498
Spark-Ignition, Four-Stroke Engine Cycle......Page 499
Simple Model of Spark-Ignition, Four-Stroke Engine......Page 502
Octane Number of Gasoline......Page 507
Spark-Ignition, Two-Stroke Internal Combustion Engine......Page 518
8.4.2 The Compression-Ignition Reciprocating Internal Combustion Engine......Page 521
8.5 The Stirling Engine......Page 531
8.5.1 The Stirling Engine Cycle......Page 532
8.5.2 Simple Model of the Ideal Stirling Engine Cycle......Page 534
8.6.1 The Heat Transfer Limited Carnot Cycle......Page 535
8.6.4 Application to other Cycles......Page 541
A. The Rankine cycle......Page 542
B: Gas Turbine Cycles......Page 548
C: Reciprocating Engines......Page 555
D: Power-Efficiency Tradeoffs......Page 556
9.1 The Carnot Cycle......Page 559
9.2.1 The Ideal Vapor Compression Cycle......Page 562
Effect of Refrigeration Temperature......Page 568
9.2.2 The Non-Ideal Vapor Compression Cycle......Page 570
Desirable Refrigerant Properties......Page 580
Appropriate Triple Point and Critical Point Temperatures......Page 581
Compatibility with Lubricants......Page 583
Refrigerant Naming Convention......Page 584
Ozone Depletion and Global Warming Potential......Page 586
9.2.4 Vapor Compression Cycle Modifications......Page 587
Liquid-Suction Heat Exchanger......Page 589
Liquid Overfed Evaporator......Page 594
Intercooled Cycle......Page 597
Economized Cycle......Page 598
Flash-Intercooled Cycle......Page 601
9.3 Heat Pumps......Page 614
9.4.1 The Basic Absorption Cycle......Page 628
9.5 Recuperative Cryogenic Cooling Cycles......Page 631
9.5.1 The Reverse Brayton Cycle......Page 633
9.5.2 The Joule-Thomson Cycle......Page 641
9.6 Regenerative Cryogenic Cooling Cycles......Page 644
A: Vapor Compression Problems......Page 645
B: Absorption, Recuperative and Regenerative Cycles......Page 650
C: Advanced Problems......Page 652
10.1 Equations of State for Pressure, Volume, and Temperature......Page 659
10.1.1 Compressibility Factor and Reduced Properties......Page 660
The Boyle Isotherm......Page 663
Critical Point Behavior......Page 664
The van der Waals Equation of State......Page 667
The Dieterici Equation of State......Page 676
The Redlich-Kwong Equation of State......Page 679
The Redlich-Kwong-Soave (RKS) Equation of State......Page 680
The Peng-Robinson (PR) Equation of State......Page 681
10.1.4 Multiple Parameter Equations of State......Page 686
10.2 Application of Fundamental Property Relations......Page 687
10.2.1 The Fundamental Property Relations......Page 688
10.2.2 Complete Equations of State......Page 689
10.3.1 Maxwells Relations......Page 700
10.3.2 Calculus Relations for Partial Derivatives......Page 702
10.3.3 Derived Relations for u, h, and s......Page 703
10.3.4 Derived Relations for other Thermodynamic Quantities......Page 711
10.3.5 Relations Involving Specific Heat Capacity......Page 715
10.4 Methodology for Calculating u, h, and s......Page 718
10.5.1 Criterion for Phase Equilibrium......Page 727
10.5.2 Relations between Properties during a Phase Change......Page 729
10.5.3 Estimating Saturation Properties using an Equation of State......Page 733
10.6 Fugacity......Page 734
10.6.1 The Fugacity of Gases......Page 736
10.6.2 The Fugacity of Liquids......Page 738
Problems......Page 740
A: Equations of State......Page 741
B. Evaluation of Properties......Page 745
C. Phase Equilibrium......Page 747
11.1.1 Composition Relations......Page 751
11.1.2 Mixture Rules for Ideal Gas Mixtures......Page 753
11.2 Energy, Enthalpy, and Entropy for Ideal Gas Mixtures......Page 756
11.2.1 Changes in Properties for Ideal Gas Mixtures with Fixed Composition......Page 758
11.2.2 Enthalpy and Entropy Change of Mixing......Page 759
11.3.1 Dalton\'s Rule......Page 768
11.3.2 Amagat\'s Rule......Page 769
Kay\'s Rule......Page 770
Mixing Rules......Page 771
11.4.1 Enthalpy and Entropy Changes of Mixing......Page 776
11.4.2 Enthalpy and Entropy Departures......Page 779
Molar Specific Enthalpy and Entropy Departures from a Two-Parameter Equation of State......Page 781
11.4.3 Enthalpy and Entropy for Ideal Solutions......Page 782
The RKS Equation of State......Page 783
The Peng-Robinson Equation of State......Page 784
11.4.5 Peng-Robinson Library Functions......Page 794
11.5.2 Chemical Potentials......Page 799
11.5.3 Evaluation of Chemical Potentials for Ideal Gas Mixtures......Page 801
11.5.4 and 11.5.5 Evaluation of Chemical Potentials for Ideal Solutions and Liquid Mixtures......Page 802
11.5.6 Applications of Multi-Component Phase Equilibrium......Page 803
11.6 The Phase Rule......Page 813
A. Ideal Gas Mixtures......Page 814
B. Real Fluid Mixtures......Page 816
C. Multi-component Phase Equilibrium......Page 817
12.1 Psychrometric Definitions......Page 821
12.2 Wet Bulb and Adiabatic Saturation Temperatures......Page 829
12.3.1 Psychrometric Properties......Page 832
12.3.2 The Psychrometric Chart......Page 834
12.3.3 Psychrometric Properties in EES......Page 840
12.4 Psychrometric Processes for Comfort Conditioning......Page 844
12.4.1 Humidification Processes......Page 845
12.4.2 Dehumidification Processes......Page 852
12.4.3 Evaporative Cooling......Page 857
12.4.4 Desiccants......Page 859
12.5 Cooling Towers......Page 860
12.5.1 Cooling Tower Nomenclature......Page 861
12.5.2 Cooling Tower Analysis......Page 862
A: Psychrometric Definitions......Page 868
B: Psychrometric Processes......Page 872
C: Advanced Problems......Page 879
13.1 Introduction to Combustion......Page 882
13.2 Balancing Chemical Reactions......Page 884
13.2.1 Air as an Oxidizer......Page 885
13.2.2 Methods for Quantifying Excess Air......Page 886
13.2.3 Psychrometric Issues......Page 887
13.3.1 Enthalpy of Formation......Page 894
13.3.2 Heating Values......Page 896
13.3.3 Enthalpy and Internal Energy as a Function of Temperature......Page 903
13.3.4 Use of EES for Determining Properties......Page 909
13.3.5 Adiabatic Reactions......Page 919
13.4 Entropy Considerations......Page 928
13.5 Exergy of Fuels......Page 937
A: Stoichiometry......Page 938
B: Energy Considerations......Page 940
C: Advanced Problems......Page 945
14.1 Criterion for Chemical Equilibrium......Page 952
14.2 Reaction Coordinates......Page 954
14.3.1 The Criterion of Equilibrium in terms of Chemical Potentials......Page 961
14.3.3 Equilibrium Constant and the Law of Mass Action for Ideal Gas Mixtures......Page 963
14.3.4 Equilibrium Constant and the Law of Mass Action for an Ideal Solution......Page 968
14.4 Alternative Methods for Chemical Equilibrium Problems......Page 973
14.4.1 Direct Minimization of Gibbs Free Energy......Page 974
14.4.2 Lagrange Method of Undetermined Multipliers......Page 979
14.5 Heterogeneous Reactions......Page 983
14.6 Adiabatic Reactions......Page 984
A: Simple Reactions......Page 997
B. Simultaneous and Heterogeneous Reactions......Page 999
15 Statistical Thermodynamics......Page 1002
15.1.1 Electromagnetic Radiation......Page 1003
15.1.2 Extension to Particles......Page 1005
15.2.2 Application of a Wave Equation......Page 1006
15.3 The Equilibrium Distribution......Page 1009
15.3.1 Macrostates and Thermodynamic Probability......Page 1010
15.3.2 Identification of the Most Probable Macrostate......Page 1012
15.3.3 The Significance of β......Page 1015
15.3.4 Boltzmann\'s Law......Page 1017
15.4.1 Definition of the Partition Function......Page 1019
15.4.2 Internal Energy from the Partition Function......Page 1020
15.4.3 Entropy from the Partition Function......Page 1021
15.4.4 Pressure from the Partition Function......Page 1022
15.5 Partition Function for an Monatomic Ideal Gas......Page 1023
15.5.1 Pressure for a Monatomic Ideal Gas......Page 1024
15.5.3 Entropy for a Monatomic Ideal Gas......Page 1025
15.6 Extension to More Complex Particles......Page 1028
15.7 Heat and Work from a Statistical Thermodynamics Perspective......Page 1031
Problems......Page 1035
Problems......Page 1039
Appendix A Unit Conversions and Useful Information......Page 1045
Appendix B Property Tables for Water......Page 1049
Appendix C Property Tables for R134a......Page 1061
Appendix D Ideal Gas & Incompressible Substances......Page 1067
Appendix E Ideal Gas Properties of Air......Page 1069
Appendix F Ideal Gas Properties of Common Combustion Gases......Page 1075
Appendix G Numerical Solution to ODEs......Page 1086
Appendix H Introduction to Maple......Page 1087
Index......Page 1089