دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [Seventh ed.] نویسندگان: John R. Howell, Kyle J. Daun, Robert Siegel, M. Pinar Mengüç سری: ISBN (شابک) : 9780429327308, 1000257819 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: [1041] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 80 Mb
در صورت تبدیل فایل کتاب Thermal radiation heat transfer به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب انتقال حرارت تشعشع حرارتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ویرایش هفتم این متن کلاسیک اصول فیزیکی اساسی تابش حرارتی و همچنین تکنیک های تحلیلی و عددی برای تعیین کمیت انتقال تشعشع بین سطوح و درون رسانه های شرکت کننده را تشریح می کند. کتاب درسی شامل بخشهایی است که به تازگی گسترش یافتهاند در مورد ویژگیهای سطح، نظریه الکترومغناطیسی، پراکندگی و جذب ذرات، و انتقال تابشی میدان نزدیک، و بر ارتباطات گستردهتر با اصول ترمودینامیکی تأکید میکند. بخشهای تحلیل معکوس و روشهای مونت کارلو برای منعکسکننده پیشرفتهای تحقیقاتی فعلی، همراه با مواد جدید در زمینه تولید، انرژیهای تجدیدپذیر، تغییرات آب و هوا، بهرهوری انرژی ساختمان، و کاربردهای زیستپزشکی، بهبود و به روز شدهاند. ویژگی ها: درمان کامل انتقال تشعشع و تبادل تشعشع در محوطه را ارائه می دهد. خواص سطوح و محیط های گازی و توسعه معادله انتقال تابشی و حل ها را پوشش می دهد. شامل پوشش گسترده ای از روش های معکوس، نظریه الکترومغناطیسی، روش های مونت کارلو، و پراکندگی و جذب توسط ذرات است. دارای پوشش گسترده نظریه انتقال تابشی میدان نزدیک و کاربردها. در مورد نظریه امواج الکترومغناطیسی و نحوه اعمال آن در انتقال تابش حرارتی بحث می کند. این کتاب درسی برای اساتید و دانشجویانی که در دورههای تحصیلات تکمیلی سال اول یا پیشرفته / ماژولهای انتقال حرارت تشعشعی در برنامههای مهندسی شرکت میکنند ایدهآل است. علاوه بر این، مهندسان، دانشمندان و محققان حرفهای که در زمینه انتقال حرارت، مهندسی انرژی، هوافضا و فناوری هستهای کار میکنند، این را یک منبع حرفهای ارزشمند خواهند یافت. بیش از 350 فاکتور پیکربندی سطح به صورت آنلاین در دسترس است که بسیاری از آنها قابلیت محاسبه آنلاین را دارند. ضمیمه های آنلاین اطلاعاتی در مورد زمینه های مرتبط مانند احتراق، تابش در محیط متخلخل، روش های عددی و زندگی نامه شخصیت های مهم در تاریخ این رشته ارائه می دهند. راهنمای راهحلها برای مدرسانی که متن را میپذیرند در دسترس است.
The seventh edition of this classic text outlines the fundamental physical principles of thermal radiation, as well as analytical and numerical techniques for quantifying radiative transfer between surfaces and within participating media. The textbook includes newly expanded sections on surface properties, electromagnetic theory, scattering and absorption of particles, and near-field radiative transfer, and emphasizes the broader connections to thermodynamic principles. Sections on inverse analysis and Monte Carlo methods have been enhanced and updated to reflect current research developments, along with new material on manufacturing, renewable energy, climate change, building energy efficiency, and biomedical applications. Features: Offers full treatment of radiative transfer and radiation exchange in enclosures. Covers properties of surfaces and gaseous media, and radiative transfer equation development and solutions. Includes expanded coverage of inverse methods, electromagnetic theory, Monte Carlo methods, and scattering and absorption by particles. Features expanded coverage of near-field radiative transfer theory and applications. Discusses electromagnetic wave theory and how it is applied to thermal radiation transfer. This textbook is ideal for Professors and students involved in first-year or advanced graduate courses/modules in Radiative Heat Transfer in engineering programs. In addition, professional engineers, scientists and researchers working in heat transfer, energy engineering, aerospace and nuclear technology will find this an invaluable professional resource. Over 350 surface configuration factors are available online, many with online calculation capability. Online appendices provide information on related areas such as combustion, radiation in porous media, numerical methods, and biographies of important figures in the history of the field. A Solutions Manual is available for instructors adopting the text.
Cover Half Title Title Page Copyright Page Table of Contents Preface Acknowledgments Authors List of Symbols Greek Symbols Subscripts Superscripts Chapter 1 Introduction to Radiative Transfer 1.1 Thermal Radiation and the Natural World 1.2 Thermal Radiation in Engineering 1.3 Thermal Radiation and Thermodynamics 1.4 Nature of the Governing Equations 1.5 Electromagnetic Waves vs Photons 1.6 Radiative Energy Exchange and Radiative Intensity 1.7 Solid Angle 1.8 Spectral Intensity 1.9 Characteristics of Blackbody Emission 1.9.1 Perfect Emitter 1.9.2 Radiation Isotropy of a Black Enclosure 1.9.3 Perfect Emitter for Each Direction and Wavelength 1.9.4 Total Radiation into a Vacuum 1.9.5 Blackbody Intensity and Its Directional Independence 1.9.6 Blackbody Emissive Power: Cosine Law Dependence 1.9.7 Hemispherical Spectral Emissive Power of a Blackbody 1.9.8 Planck’s Law: Spectral Distribution of Emissive Power 1.9.9 Approximations to the Blackbody Spectral Distribution 1.9.9.1 Wien’s Formula 1.9.9.2 Rayleigh–Jeans Formula 1.9.10 Wien’s Displacement Law 1.9.11 Total Blackbody Intensity and Emissive Power 1.9.12 Blackbody Radiation within a Spectral Band 1.9.13 Summary of Blackbody Properties 1.10 Radiative Energy along a Line-of-Sight 1.10.1 Radiative Energy Loss due to Absorption and Scattering 1.10.2 Mean Penetration Distance 1.10.3 Optical Thickness 1.10.4 Radiative Energy Gain Due to Emission 1.10.5 Radiative Energy Density and Radiation Pressure 1.10.6 Radiative Energy Gain due to In-Scattering 1.11 Radiative Transfer Equation 1.12 Radiative Transfer in Enclosures with Nonparticipating Media 1.13 Probabilistic Interpretation 1.14 Concluding Remarks Homework Problems Chapter 2 Radiative Properties at Interfaces 2.1 Introduction 2.2 Emissivity 2.2.1 Directional Spectral Emissivity, ελ(θ,φ,T) 2.2.2 Directional Total Emissivity, ε(θ,ɸ,T) 2.2.3 Hemispherical Spectral Emissivity, ελ(T) 2.2.4 Hemispherical Total Emissivity, ε(T) 2.3 Absorptivity 2.3.1 Directional Spectral Absorptivity, αλ(θi,φi,T) 2.3.2 Kirchhoff’s Law 2.3.3 Directional Total Absorptivity, α(θi,φi,T) 2.3.4 Kirchhoff’s Law for Directional Total Properties 2.3.5 Hemispherical Spectral Absorptivity, αλ(T) 2.3.6 Hemispherical Total Absorptivity, α(T) 2.3.7 Diffuse-Gray Surface 2.4 Reflectivity 2.4.1 Spectral Reflectivities 2.4.1.1 Bidirectional Spectral Reflectivity, ρλ(θr,ϕr,θi,ϕi) 2.4.1.2 Reciprocity for Bidirectional Spectral Reflectivity 2.4.1.3 Directional Spectral Reflectivities, ρλ(θr,ϕr), ρλ(θi,ϕi) 2.4.1.4 Reciprocity for Directional Spectral Reflectivity 2.4.1.5 Hemispherical Spectral Reflectivity, ρλ 2.4.1.6 Limiting Cases for Spectral Surfaces 2.4.2 Total Reflectivities 2.4.2.1 Bidirectional Total Reflectivity, ρ(θr,ϕr,θi,ϕi) 2.4.2.2 Reciprocity for Bidirectional Total Reflectivity 2.4.2.3 Directional-Hemispherical Total Reflectivity, ρ(θr,ϕr), ρ(θi,ϕi) 2.4.2.4 Reciprocity for Directional Total Reflectivity 2.4.2.5 Hemispherical Total Reflectivity, ρ 2.4.3 Summary of Restrictions on Reflectivity Reciprocity Relations 2.5 Transmissivity at an Interface 2.5.1 Spectral Transmissivities 2.5.1.1 Bidirectional Spectral Transmissivity, τλ(θt,ϕt,θi,ϕi) 2.5.1.2 Directional Spectral Transmissivities, τλ(θt,ϕt), τλ(θi,ϕi) 2.5.1.3 Hemispherical Spectral Transmissivity, τλ 2.5.2 Total Transmissivities 2.5.2.1 Bidirectional Total Transmissivity, τ(θi,ϕi,θt,ϕt) 2.5.2.2 Directional Total Transmissivities, τ(θi,ϕi) 2.5.2.3 Hemispherical-Directional Total Transmissivity, τ(θt,ϕt), τ(θi,ϕi) 2.5.2.4 Hemispherical Total Transmissivity, τ 2.6 Relations among Reflectivity, Absorptivity, Emissivity, and Transmissivity Homework Problems Chapter 3 Radiative Properties of Opaque Materials 3.1 Introduction 3.2 Electromagnetic Wave Theory Predictions 3.2.1 Dielectric Materials 3.2.1.1 Reflection and Refraction at the Interface between Two Perfect Dielectrics (No Wave Attenuation, k → 0) 3.2.1.2 Reflectivity 3.2.1.3 Emissivity 3.2.2 Radiative Properties of Conductors 3.2.2.1 Electromagnetic Relations for Incidence on an Absorbing Medium 3.2.2.2 Reflectivity and Emissivity Relations for Metals (Large k) 3.2.2.3 Relations between Radiative Emission and Electrical Properties 3.2.3 Extensions to the Theory of Radiative Properties 3.3 Measurements on Real Surfaces 3.3.1 Heterogeneity and Surface Coatings 3.3.2 Surface Roughness Effects 3.3.3 Variation of Radiative Properties with Surface Temperature 3.3.3.1 Non-metals 3.3.3.2 Metals 3.3.4 Properties of Liquid Metals 3.3.5 Properties of Semiconductors and Superconductors 3.4 Selective Surfaces for Solar Applications 3.4.1 Characteristics of Solar Radiation 3.4.2 Modification of Surface Spectral Characteristics 3.4.3 Modification of Surface Directional Characteristics 3.5 Concluding Remarks Homework Problems Chapter 4 Configuration Factors for Diffuse Surfaces with Uniform Radiosity 4.1 Radiative Transfer Equation for Surfaces Separated by a Transparent Medium 4.1.1 Enclosures with Diffuse Surfaces 4.1.2 Enclosures with Directional (Nondiffuse) and Spectral (Nongray) Surfaces 4.2 Geometric Configuration Factors between Two Surfaces 4.2.1 Configuration Factor for Energy Exchange between Diffuse Differential Areas 4.2.1.1 Reciprocity for Differential Element Configuration Factors 4.2.1.2 Sample Configuration Factors between Differential Elements 4.2.2 Configuration Factor between a Differential Area Element and a Finite Area 4.2.2.1 Reciprocity Relation for Configuration Factors between Differential and Finite Areas 4.2.2.2 Configuration Factors between Differential and Finite Areas 4.2.3 Configuration Factor and Reciprocity for Two Finite Areas 4.3 Methods for Determining Configuration Factors 4.3.1 Configuration Factor Algebra 4.3.1.1 Configuration Factors Determined by Symmetry 4.3.2 Configuration Factor Relations in Enclosures 4.3.3 Techniques for Evaluating Configuration Factors 4.3.3.1 Hottel’s Crossed-String Method 4.3.3.2 Contour Integration 4.3.3.3 Differentiation of Known Factors 4.3.4 Unit-Sphere and Hemicube Methods 4.3.5 Direct Numerical Integration 4.3.6 Computer Programs for the Evaluation of Configuration Factors 4.4 Constraints on Configuration Factor Accuracy 4.5 Compilation of Known Configuration Factors and Their References: Appendix C and Web Catalog Homework Problems Chapter 5 Radiation Exchange in Enclosures Composed of Black and/or Diffuse-Gray Surfaces 5.1 Introduction 5.2 Radiative Transfer for Black Surfaces 5.2.1 Transfer between Black Surfaces Using Configuration Factors 5.2.2 Radiation Exchange in a Black Enclosure 5.3 Radiation Among Finite Diffuse-Gray Areas 5.3.1 Net-Radiation Method for Enclosures 5.3.1.1 System of Equations Relating Surface Heating Rate Q and Surface Temperature T 5.3.1.2 Solution Method in Terms of Radiosity J 5.3.2 Enclosure Analysis in Terms of Energy Absorbed at Surface 5.3.3 Enclosure Analysis by the Use of Transfer Factors 5.3.4 Matrix Inversion for Enclosure Equations 5.4 Radiation Analysis Using Infinitesimal Areas 5.4.1 Generalized Net-Radiation Method Using Infinitesimal Areas 5.4.1.1 Relations between Surface Temperature T and Surface Heat Flux q 5.4.1.2 Solution Method in Terms of Outgoing Radiative Flux J 5.4.1.3 Special Case When Imposed Heating q Is Specified for All Surfaces 5.4.2 Boundary Conditions Specifying Inverse Problems 5.5 Computer Programs for Enclosure Analysis Homework Problems Chapter 6 Exchange of Thermal Radiation among Nondiffuse Nongray Surfaces 6.1 Introduction 6.2 Enclosure Theory for Diffuse Nongray Surfaces 6.2.1 Parallel-Plate Geometry 6.2.2 Spectral and Finite Spectral Band Relations for an Enclosure 6.2.3 Semigray Approximations 6.3 Directional-Gray Surfaces 6.4 Surfaces with Directionally and Spectrally Dependent Properties 6.5 Radiation Exchange in Enclosures with Specularly Reflecting Surfaces 6.5.1 Representative Cases with Simple Geometries 6.5.2 Ray Tracing and Image Formation 6.5.3 Radiative Transfer among Simple Specular Surfaces for Diffuse Energy Leaving a Surface 6.5.4 Configuration-Factor Reciprocity for Specular Surfaces; Specular Exchange Factors 6.6 Net-Radiation Method in Enclosures Having Both Specular and Diffuse Reflecting Surfaces 6.6.1 Enclosures with Planar Surfaces 6.6.2 Curved Specular Reflecting Surfaces 6.7 Multiple Radiation Shields 6.8 Concluding Remarks Homework Problems Chapter 7 Radiation Combined with Conduction and Convection at Boundaries 7.1 Introduction 7.2 Energy Relations and Boundary Conditions 7.2.1 General Relations 7.2.2 Uncoupled and Coupled Energy Transfer Modes 7.2.3 Control Volume Approach for One- or Two-Dimensional Conduction along Thin Walls 7.3 Radiation Transfer with Conduction Boundary Conditions 7.3.1 Thin Fins with 1D or 2D Conduction 7.3.1.1 1D Energy Flow 7.3.1.2 2D Energy Flow 7.3.2 Multidimensional and Transient Heat Conduction with Radiation 7.4 Radiation with Convection and Conduction 7.4.1 Thin Radiating Fins with Convection 7.4.2 Channel Flows 7.4.3 Natural Convection with Radiation 7.5 Numerical Solution Methods 7.5.1 Numerical Integration Methods for Use with Enclosure Equations 7.5.2 Numerical Formulations for Combined-Mode Energy Transfer 7.5.2.1 Finite-Difference Formulation 7.5.2.2 Finite Element Method Formulation 7.5.3 Numerical Solution Techniques 7.5.4 Verification, Validation, and Uncertainty Quantification 7.5.4.1 Verification 7.5.4.2 Validation 7.5.4.3 Uncertainty Quantification 7.6 Concluding Remarks Homework Problems Chapter 8 Electromagnetic Wave Theory 8.1 Introduction 8.2 The Electromagnetic Wave Equations 8.3 Wave Propagation in a Medium 8.3.1 EM Wave Propagation in Perfect Dielectric Media 8.3.2 Wave Propagation in Isotropic Media with Finite Electrical Conductivity 8.3.3 Energy of an EM Wave 8.3.4 Polarization 8.4 Laws of Reflection and Refraction 8.4.1 Reflection and Refraction at the Interface between Perfect Dielectrics 8.4.2 Reflection and Refraction at the Interface of a Perfect Dielectric and a Conducting Medium 8.5 Classical Models for Optical Constants 8.5.1 Lorentz Model (Non-conductors) 8.5.2 Drude Model (Conductors) 8.6 EM Wave Theory and the Radiative Transfer Equation Homework Problems Chapter 9 Properties of Participating Media 9.1 Introduction 9.2 Propagation of Radiation in Absorbing Media 9.3 Spectral Lines and Bands for Gas Absorption and Emission 9.3.1 Physical Mechanisms 9.3.2 Local Thermodynamic Equilibrium (LTE) 9.3.3 Spectral Line Broadening 9.3.3.1 Natural Broadening 9.3.3.2 Doppler Broadening 9.3.3.3 Collision Broadening and Narrowing 9.3.3.4 Stark Broadening 9.3.4 Absorption or Emission by a Single Spectral Line 9.3.4.1 Property Definitions along a Path in a Uniform Absorbing and Emitting Medium 9.3.4.2 Weak Lines 9.3.4.3 Lorentz Lines 9.3.5 Band Absorption 9.3.5.1 Band Structure 9.3.5.2 Types of Band Models 9.3.5.3 Databases for the Line Absorption Properties of Molecular Gases 9.4 Band Models and Correlations for Gas Absorption and Emission 9.4.1 Narrow-Band Models 9.4.1.1 Elsasser Model 9.4.1.2 Goody Model 9.4.1.3 Malkmus Model 9.4.2 Wide Band Models 9.4.3 Probability Density Function-Based Band Correlations 9.4.3.1 k-Distribution Method 9.4.3.2 Correlated-k Assumption 9.4.3.3 Full Spectrum k-Distribution Methods 9.4.3.4 Effect of Temperature and Concentration Gradients in the Medium 9.4.4 Weighted Sum of Gray Gases 9.5 Gas Total Emittance Correlations 9.6 Absorption Coefficient Neglecting Induced Emission 9.7 Definitions and Use of Mean Absorption Coefficients 9.7.1 Use of Mean Absorption Coefficients 9.7.2 Definitions of Mean Absorption Coefficients 9.7.3 Approximate Solutions of the Radiative Transfer Equation Using Mean Absorption Coefficients 9.8 Radiative Properties of Translucent Liquids and Solids Homework Problems Chapter 10 Absorption and Scattering by Particles and Agglomerates 10.1 Overview 10.2 Absorption and Scattering: Definitions 10.2.1 Background 10.2.2 Absorption and Scattering Coefficients, Cross-Sections, Efficiencies 10.2.3 Scattering Phase Function 10.3 Scattering by Spherical Particles 10.3.1 Scattering by a Large Specularly Reflecting Sphere 10.3.2 Reflection from a Large Diffuse Sphere 10.3.3 Large Ideal Dielectric Sphere with n ≈ 1 10.3.4 Diffraction by a Large Sphere 10.3.5 Geometric Optics Approximation 10.4 Scattering by Small Particles 10.4.1 Rayleigh Scattering by Small Spheres 10.4.2 Cross-Section for Rayleigh Scattering 10.4.3 Phase Function for Rayleigh Scattering 10.5 The Lorenz–Mie Theory for Spherical Particles 10.5.1 Formulation for Homogeneous and Stratified Spherical Particles 10.5.2 Cross-Sections for Specific Cases 10.6 Approximate Anisotropic Scattering Phase Functions 10.6.1 Forward Scattering Phase Function 10.6.2 Linear-Anisotropic Phase Function 10.6.3 Delta-Eddington Phase Function 10.6.4 Henyey–Greenstein Phase Function 10.7 Prediction of Properties for Irregularly Shaped Particles 10.7.1 Integral and Differential Formulations 10.7.2 T-Matrix Approach 10.7.3 Discrete Dipole Approximation 10.7.4 Finite-Element Method 10.7.5 Finite-Difference Time-Domain Method 10.8 Dependent Absorption and Scattering Homework Problems Chapter 11 Fundamental Radiative Transfer Relations and Approximate Solution Methods 11.1 Introduction 11.2 Energy Equation and Boundary Conditions for a Participating Medium 11.3 Radiative Transfer and Source-Function Equations 11.3.1 Radiative Transfer Equation 11.3.2 Source-Function Equation 11.4 Radiative Flux and Its Divergence within a Medium 11.4.1 Radiative Flux Vector 11.4.2 Divergence of Radiative Flux without Scattering (Absorption Alone) 11.4.3 Divergence of Radiative Flux Including Scattering 11.5 Summary of Relations for Radiative Transfer in Absorbing, Emitting, and Scattering Media 11.5.1 Energy Equation 11.5.2 Radiative Energy Source 11.5.3 Source Function 11.5.4 Radiative Transfer Equation 11.5.5 Relations for a Gray Medium 11.6 Treatment of Radiation Transfer in Non-LTE Media 11.7 Net-Radiation Method for Enclosures Filled with an Isothermal Medium of Uniform Composition 11.7.1 Definitions of Spectral Geometric-Mean Transmission and Absorption Factors 11.7.2 Matrix of Enclosure Theory Equations 11.7.3 Energy Balance on a Medium 11.7.4 Spectral Band Equations for an Enclosure 11.7.5 Gray Medium in a Gray Enclosure 11.8 Evaluation of Spectral Geometric-Mean Transmittance and Absorptance Factors 11.9 Mean Beam Length Approximation for Spectral Radiation from an Entire Volume of a Medium to All or Part of Its Boundary 11.9.1 Mean Beam Length for a Medium between Parallel Plates Radiating to Area on Plate 11.9.2 Mean Beam Length for the Sphere of a Medium Radiating to Any Area on Its Boundary 11.9.3 Radiation from the Entire Medium Volume to Its Entire Boundary for Optically Thin Media 11.9.4 Correction to Mean Beam Length When a Medium Is Not Optically Thin 11.10 Exchange of Total Radiation in an Enclosure by Use of Mean Beam Length 11.10.1 Total Radiation from the Entire Medium Volume to All or Part of Its Boundary 11.10.2 Exchange between the Entire Medium Volume and the Emitting Boundary 11.11 Optically Thin and Cold Media 11.11.1 Nearly Transparent Medium 11.11.2 Optically Thin Media with Cold Boundaries or Small Incident Radiation: The Emission Approximation 11.11.3 Cold Medium with Weak Scattering Homework Problems Chapter 12 Participating Media in Simple Geometries 12.1 Introduction 12.2 Radiative Intensity, Flux, Flux Divergence, and Source Function in a Plane Layer 12.2.1 Radiative Transfer Equation and Radiative Intensity for a Plane Layer 12.2.2 Local Radiative Flux in a Plane Layer 12.2.3 Divergence of the Radiative Flux: Radiative Energy Source 12.2.4 Equation for the Source Function in a Plane Layer 12.2.5 Relations for Isotropic Scattering 12.2.6 Diffuse Boundary Fluxes for a Plane Layer with Isotropic Scattering 12.3 Gray Plane Layer of Absorbing and Emitting Medium with Isotropic Scattering 12.4 Gray Plane Layer in Radiative Equilibrium 12.4.1 Energy Equation 12.4.2 Absorbing Gray Medium in Radiative Equilibrium with Isotropic Scattering 12.4.3 Isotropically Scattering Medium with Zero Absorption 12.4.4 Gray Medium with dqR/dx = 0 between Opaque Diffuse-Gray Boundaries 12.4.5 Solution for Gray Medium with dqr/dx = 0 between Black or Diffuse-Gray Boundaries at Specified Temperatures 12.4.5.1 Gray Medium between Black Boundaries 12.4.5.2 Gray Medium between Diffuse-Gray Boundaries 12.4.5.3 Extended Solution for Optically Thin Medium between Gray Boundaries 12.5 Multidimensional Radiation in a Participating Gray Medium with Isotropic Scattering 12.5.1 Radiation Transfer Relations in Three Dimensions 12.5.2 Two-Dimensional Transfer in an Infinitely Long Right Rectangular Prism 12.5.3 One-Dimensional Transfer in a Cylindrical Region 12.5.4 Additional Information on Non-planar and Multidimensional Geometries Homework Problems Chapter 13 Numerical Solution Methods for Radiative Transfer in Participating Media 13.1 Introduction 13.2 Series Expansion and Moment Methods 13.2.1 Optically Thick Media: Radiative Diffusion 13.2.1.1 Simplified Derivation of the Radiative Diffusion Approximation 13.2.1.2 General Radiation–Diffusion Relations in a Medium 13.2.2 Moment-Based Methods 13.2.2.1 Milne–Eddington (Differential) Approximation 13.2.2.2 General Spherical Harmonics (PN) Method 13.2.2.3 Simplified PN (SPN) Method 13.2.2.4 MN Method 13.3 Discrete Ordinates (SN) Method 13.3.1 Two-Flux Method: The Schuster–Schwarzschild Approximation 13.3.2 Radiative Transfer Equation with SN Method 13.3.3 Boundary Conditions for the SN Method 13.3.4 Control Volume Method for SN Numerical Solution 13.3.4.1 Relations for 2D Rectangular Coordinates 13.3.4.2 Relations for 3D Rectangular Coordinates 13.3.5 Ordinate and Weighting Pairs 13.3.6 Results Using Discrete Ordinates 13.4 Other Methods That Depend on Angular Discretization 13.4.1 Discrete Transfer Method 13.4.2 Finite Volume Method 13.4.3 Boundary Element Method 13.5 Zonal Method 13.5.1 Exchange Area Relations 13.5.2 Zonal Formulation for Radiative Equilibrium 13.5.3 Developments for the Zone Method 13.5.3.1 Smoothing of Exchange Area Sets 13.5.3.2 Other Formulations of the Zone Method 13.5.3.3 Numerical Results from the Zone Method 13.6 Additional Solution Methods 13.6.1 Reduction of the Integral Order 13.6.2 Spectral Methods 13.6.3 Finite Element Method (FEM) for Radiative Equilibrium 13.6.4 Lattice-Boltzmann Method 13.6.5 Additional Information on Numerical Methods 13.7 Comparison of Results for the Methods 13.8 Benchmark Solutions for Computational Verification Homework Problems Chapter 14 The Monte Carlo Method 14.1 Introduction 14.2 Fundamentals of the Monte Carlo method 14.2.1 Monte Carlo as an Integration Tool 14.2.2 Sampling from a Probability Density 14.2.3 Markov-Chain Monte Carlo 14.2.4 Uncertainty Quantification 14.3 Monte Carlo for Surface-to-Surface Radiation Exchange 14.3.1 Radiation between Black Surfaces 14.3.2 Radiation between Nonblack Surfaces 14.3.3 Wavelength-Dependent Properties 14.3.4 Ray-Tracing 14.4 Monte Carlo for Enclosures Containing Participating Media 14.4.1 Relations for Absorption and Scattering within the Medium 14.4.2 Net Radiative Energy Transfer between Volume and Surface Elements 14.4.3 Treatment of Wavelength-Dependent Properties 14.5 Variance Reduction Methods 14.5.1 Energy Partitioning 14.5.2 Importance Sampling 14.5.3 Reciprocity 14.5.4 Quasi-Monte Carlo 14.6 Backwards (Reverse) Monte Carlo 14.7 The Null-Collision Technique 14.8 Sensitivities and Nonlinear Monte Carlo 14.9 Summary and Outlook Homework Problems Chapter 15 Conjugate Heat Transfer in Participating Media 15.1 Introduction 15.2 Radiation Combined with Conduction 15.2.1 Energy Balance 15.2.2 Plane Layer with Conduction and Radiation 15.2.2.1 Absorbing–Emitting Medium without Scattering 15.2.2.2 Absorbing–Emitting Medium with Scattering 15.2.3 Rectangular Region with Conduction and Radiation 15.2.4 PN Method for Radiation Combined with Conduction 15.2.5 Approximations for Combined Radiation and Conduction 15.2.5.1 Addition of Energy Transfer by Radiation and Conduction 15.2.5.2 Diffusion Method for Combined Radiation and Conduction 15.3 Transient Solutions Including Conduction 15.4 Combined Radiation, Conduction, and Convection in a Boundary Layer 15.4.1 Optically Thin Thermal Boundary Layer 15.4.2 Optically Thick Thermal Boundary Layer 15.5 Numerical Solution Methods for Combined Radiation, Conduction, and Convection in Participating Media 15.5.1 Finite-Difference Methods 15.5.1.1 Energy Equation for Combined Radiation and Conduction 15.5.1.2 Radiation and Conduction in a Plane Layer 15.5.1.3 Radiation and Conduction in a 2D Rectangular Region 15.5.1.4 Boundary Conditions for Numerical Solutions 15.5.2 Finite-Element Method 15.5.2.1 FEM for Radiation with Conduction and/or Convection 15.5.2.2 Results from Finite-Element Analyses 15.5.3 Pitfalls of Iterative Methods 15.6 Results for Combined Radiation, Convection, and Conduction Heat Transfer 15.6.1 Forced Convection Channel Flows 15.6.2 Natural Convection Flow, Radiative Energy Transfer, and Stability 15.6.3 Radiative Transfer in Porous Media and Packed Beds 15.6.4 Radiation Interactions with Turbulence 15.6.5 Additional Topics with Combined Radiation, Conduction, and Convection 15.7 Inverse Multimode Problems 15.8 Verification, Validation, and Uncertainty Quantification Homework Problems Chapter 16 Near-Field Thermal Radiation 16.1 Introduction 16.2 Electromagnetic Treatment of Thermal Radiation and Basic Concepts 16.2.1 Near-Field versus Far-Field Thermal Radiation 16.2.2 Electromagnetic Description of Near-Field Thermal Radiation 16.2.3 Near-Field Radiative Energy Flux 16.2.4 Density of Electromagnetic States 16.2.5 Spatial and Temporal Coherence of Thermal Radiation 16.3 Evanescent and Surface Waves 16.3.1 Evanescent Waves 16.3.2 Surface Waves 16.4 Near-Field Radiative Energy Flux Calculations 16.4.1 Near-Field Radiative Energy Transfer in 1D Layered Media 16.4.2 Near-Field Radiative Energy Transfer between Two Bulk Materials Separated by a Vacuum Gap 16.5 Computational Studies of Near-Field Thermal Radiation 16.6 Experimental Studies of Near-Field Thermal Radiation 16.6.1 Earlier Work 16.6.2 Experimental Determination of Near-Field Radiative Transfer Coefficient 16.6.3 Near-Field Effects on Radiative Properties and Metamaterials 16.7 Concluding Remarks Homework Problems Chapter 17 Radiative Effects in Translucent Solids, Windows, and Coatings 17.1 Introduction 17.2 Transmission, Absorption, and Reflection for Windows 17.2.1 Single Partially Transmitting Layer with Thickness D ≫ λ (No Wave Interference Effects) 17.2.1.1 Ray-Tracing Method 17.2.1.2 Net-Radiation Method 17.2.2 Multiple Parallel Windows 17.2.3 Transmission through Multiple Parallel Glass Plates 17.2.4 Interaction of Transmitting Plates with Absorbing Plate 17.3 Enclosure Analysis for Partially Transparent Windows 17.4 Effects of Coatings or Thin Films on Surfaces 17.4.1 Coating without Wave Interference Effects 17.4.1.1 Nonabsorbing Dielectric Coating on Nonabsorbing Dielectric Substrate 17.4.1.2 Absorbing Coating on Metal Substrate 17.4.2 Thin Film with Wave Interference Effects 17.4.2.1 Dielectric Thin Film on Dielectric Substrate 17.4.2.2 Absorbing Thin Film on a Metal Substrate 17.4.3 Films with Partial Coherence 17.5 Refractive Index Effects on Radiation in a Participating Medium 17.5.1 Effect of Refractive Index on Intensity Crossing an Interface 17.5.2 Effect of Angle for Total Reflection 17.5.3 Effects of Boundary Conditions for Radiation Analysis in a Plane Layer 17.5.3.1 Layer with Nondiffuse or Specular Surfaces 17.5.3.2 Diffuse Surfaces 17.5.4 Emission from a Translucent Layer (n > 1) at Uniform Temperature with Specular or Diffuse Boundaries 17.6 Multiple Participating Layers with Heat Conduction 17.6.1 Formulation for Multiple Participating Plane Layers 17.6.2 Translucent Layer on a Metal Wall 17.6.3 Composite of Two Translucent Layers 17.6.3.1 Temperature Distribution Relations from the Energy Equation 17.6.3.2 Relations for Radiative Energy Flux 17.6.3.3 Equation for the Source Function 17.6.3.4 Solution Procedure and Typical Results 17.7 Light Pipes and Fiber Optics 17.8 Final Remarks Homework Problems Chapter 18 Inverse Problems in Radiative Transfer 18.1 Introduction 18.2 Inverse Analysis and Ill-Posed Problems 18.3 Mathematical Properties of Inverse Problems 18.3.1 Linear Inverse Problems 18.3.2 Nonlinear Inverse Problems 18.4 Solution Methods for Inverse Problems 18.4.1 Linear Regularization 18.4.2 Nonlinear Programming 18.4.3 Metaheuristics 18.4.4 Bayesian Methods 18.4.5 Artificial Neural Networks 18.4.6 Is Least-Squares Minimization an Inverse Technique? 18.5 Inverse Design Problems 18.5.1 Linear Inverse Design Problems 18.5.2 Nonlinear Inverse Design Problems 18.6 Parameter Estimation Problems 18.6.1 Problems Involving 1D Participating Media 18.6.2 Tomography 18.6.3 Light-Scattering by Droplets and Particles 18.6.4 Inverse Crimes 18.7 Summary Homework Problems Chapter 19 Applications of Radiation Energy Transfer 19.1 Introduction 19.2 Solar Energy 19.2.1 Solar Energy Conversion 19.2.1.1 Central Solar Power Systems 19.2.1.2 Photovoltaic (PV) Conversion 19.2.1.3 Solar Enhanced HVAC Systems 19.2.2 Radiation Transfer, Architecture, and Visual Comfort 19.2.3 Astronomy, Astrophysics, and Atmospheric Radiation 19.2.4 Solar Energy, Global Warming, and Climate Change 19.3 Radiation from Combustion 19.3.1 Radiation from Non-Sooting Flames 19.3.2 Radiation from Sooting Flames 19.3.3 Modeling of Furnaces and Burners 19.4 Radiation in Porous Media and Packed Beds 19.4.1 CSP Absorbers Using Porous Media 19.4.2 Porous Media Burners 19.5 Aerospace Applications 19.5.1 Spacecraft Thermal Control 19.5.2 Radiation Energy Transfer in Rocket Nozzles 19.6 Advanced Manufacturing and Materials Processing 19.6.1 Radiation Transfer in Process Industries 19.7 Biomedical Applications of Thermal Radiation 19.8 Conclusions Homework Problems Appendix A: Conversion Factors, Radiation Constants, and Blackbody Functions Appendix B: Radiative Properties Appendix C: Catalog of Selected Configuration Factors Appendix D: Exponential Integral Relations and Two-Dimensional Radiation Functions References Index