دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Gordon N. Ellison
سری:
ISBN (شابک) : 0367465310, 9780367465315
ناشر: CRC Press
سال نشر: 2020
تعداد صفحات: 405
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 مگابایت
در صورت تبدیل فایل کتاب Thermal Computations for Electronics: Conductive, Radiative, and Convective Air Cooling به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب محاسبات حرارتی برای الکترونیک: خنک کننده هوا رسانا، تابشی و همرفتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نسخه اول محاسبات حرارتی برای الکترونیک: خنککننده هوای رسانا، تابشی و همرفتیبر اساس یادداشتهای سخنرانی نویسنده است که او در طول تقریباً 40 سال فعالیت طراحی و تحلیل حرارتی توسعه داده است. که 15 سال گذشته شامل تدریس یک دوره دانشگاهی در مقاطع ارشد و کارشناسی ارشد بود. مطالب موضوع از انتشارات محققین محترم تهیه شده است و شامل موضوعات و روشهای اصیل این نویسنده است. دانشآموزان متعددی در چاپ اول و دوم، ویرایش دوم، بازنویسی بخشها (به عنوان مثال، اثرات فضایی تشعشع، ویژگیهای تابع گرین برای انتشار حرارتی، نظریه و کاربرد 1-D FEA)، و برخی از آنها مشارکت داشتهاند. مطالب جدید اضافه شده است.
طعم و سازماندهی نسخه اول حفظ شده است، به موجب آن خواننده از طریق فرآیند تحلیل سیستم ها و سپس اجزاء هدایت می شود. مواد جدید مهمی در رابطه با اثرات ارتفاع بر روی جریان هوای اجباری و شناوری و انتقال حرارت اضافه شده است. 20 درصد اول کتاب به پیشبینی جریان هوا و دمای هوای مخلوط شده در سیستمها، کانالهای برد مدار، و هیت سینکها اختصاص دارد، و به دنبال آن همرفتی (شامل قطعات نصبشده در PCB) تابشی است. و انتقال حرارت رسانا و دماهای حاصل در تجهیزات الکترونیکی. نمونههای کاربردی دقیق، مشکلات مختلفی را نشان میدهند.
دانلودها (از وبسایت CRC) عبارتند از: نمونههای متنی MathcadTM، راهحلهای تمرینی (فقط برای پذیرش اساتید) بهعلاوه کمکهای سخنرانی PDF (استادان) فقط)، و یک آموزش (فصل 14) با استفاده از نرم افزار رایگان FEA برای حل مشکل پخش حرارتی.
این کتاب یک منبع حرفه ای ارزشمند برای مطالعه شخصی است و برای استفاده در دوره های خنک کننده الکترونیک ایده آل است. . برای اولین دوره انتقال حرارت که کاربردها به اندازه تئوری مهم هستند، مناسب است.
The first edition of Thermal Computations for Electronics: Conductive, Radiative, and Convective Air Cooling was based on the author's lecture notes that he developed over the course of nearly 40 years of thermal design and analysis activity, the last 15 years of which included teaching a university course at the senior undergraduate and graduate levels. The subject material was developed from publications of respected researchers and includes topics and methods original to this author. Numerous students have contributed to both the first and second editions, the latter corrected, sections rewritten (e.g., radiation spatial effects, Green's function properties for thermal spreading, 1-D FEA theory and application), and some new material added.
The flavor and organization of the first edition have been retained, whereby the reader is guided through the analysis process for systems and then components. Important new material has been added regarding altitude effects on forced and buoyancy driven airflow and heat transfer. The first 20% of the book is devoted to the prediction of airflow and well-mixed air temperatures in systems, circuit board channels, and heat sinks, followed by convective (PCB-mounted components included), radiative, and conductive heat transfer and the resultant temperatures in electronic equipment. Detailed application examples illustrate a variety of problems.
Downloads (from the CRC website) include: MathcadTM text examples, exercise solutions (adopting professors only) plus PDF lecture aids (professors only), and a tutorial (Chapter 14) using free FEA software to solve a thermal spreading problem.
This book is a valuable professional resource for self-study and is ideal for use in a course on electronics cooling. It is well-suited for a first course in heat transfer where applications are as important as theory.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface to the Second Edition Preface to the First Edition About the Author Chapter 1: Introduction 1.1 Primary Mechanisms of Heat Flow 1.2 Conduction 1.3 Application Example: Silicon Chip Resistance Calculation 1.4 Convection 1.5 Application Example: Chassis Panel Cooled by Natural Convection 1.6 Radiation 1.7 Application Example: Chassis Panel Cooled only by Radiation 1.8 Illustrative Example: Simple thermal Network Model for a Heat Sinked Power Transistor on a Circuit Board 1.9 Illustrative Example: Thermal Network Circuit for a Printed Circuit Board 1.10 Compact Component Models 1.11 Illustrative Example: Pressure and Thermal Circuits for a Forced Air Cooled Enclosure 1.12 Illustrative Example: A Single Chip Package on a Printed Circuit Board - the Problem 1.13 Illustrative Example: A Single Chip Package on a Printed Circuit Board - Fourier Series Analytical Solution 1.14 Illustrative Example: A Single Chip Package on a Printed Circuit Board - Thermal Network Solution 1.15 Illustrative Example: A Single Chip Package on a Printed Circuit Board - Finite Element Method Solution 1.16 Illustrative Example: A Single Chip Package on a Printed Circuit Board - Three Solution Methods Compared Exercises Chapter 2: Thermodynamics of Airflow 2.1 The First Law of Thermodynamics 2.2 Heat Capacity at Constant Volume 2.3 Heat Capacity at Constant Pressure 2.4 Steady Gas Flow as an Open, Steady, Single Stream 2.5 Air Temperature Rise: Temperature Dependence 2.6 Air Temperature Rise: T Identified using Differential forms of ∆T, ∆Q 2.7 Air Temperature Rise: T Identified as Average Bulk Temperature Exercises Chapter 3: Airflow I: Forced Flow in Systems 3.1 Preliminaries 3.2 Bernoulli’s Equation 3.3 Bernoulli’s Equation with Losses 3.4 Fan Testing 3.5 Estimate of Fan Test Error Accrued by Measurement of Downstream Static Pressure 3.6 Derivation of the “One Velocity” Head Formula 3.7 Fan and System Matching 3.8 Adding Fans in Series and Parallel 3.9 Airflow Resistance: Common Rlements 3.10 Airflow Resistance: True Circuit Boards 3.11 Modeled Circuit Board Elements 3.12 Combining Airflow Resistances 3.13 Application Example: Forced Air Cooled Enclosure Exercises Chapter 4: Airflow II: Forced Flow in Ducts, Extrusions, and Pin Fin Arrays 4.1 The Airflow Problem for Channels with a Rectangular Cross-Section 4.2 Entrance and Exit Effects for Laminar and Turbulent Flow 4.3 Friction Coefficient for Channel Flow 4.4 Application Example: Two-Sided Extruded Heat Sink 4.5 A pin Fin Correlation 4.6 Application Example: Pin Fin Problem from Khan et al. 4.7 Flow Bypass Effects According to Lee 4.8 Application Example: Interfin Air Velocity Calculation for a Heat Sink in a Circuit Board Channel using the Flow Bypass Method of Lee with the Muzychka and Yovanovich Friction Factor Correlation 4.9 Application Example: Interfin Air Velocity Calculation for a Heat Sink in a Circuit Board Channel Using the Flow Bypass Method of Lee with the Handbook of Heat Transfer Friction Factor Correlation 4.10 Flow Bypass Effects According to Jonsson and Moshfegh 4.11 Application Example: Pin Fin Problem from Khan et al., using the Jonsson and Moshfegh Correlation, Non-Bypass Exercises Chapter 5: Airflow III: Buoyancy Driven Draft 5.1 Derivation of Buoyancy Driven Head 5.2 Matching Buoyancy Head to System 5.3 Application Example: Buoyancy-Draft Cooled Enclosure 5.4 System Models with Buoyant Airflow Exercises Chapter 6: Forced Convective Heat Transfer I: Components 6.1 Forced Convection from a Surface 6.2 Dimensionless Numbers: Nusselt, Reynolds, and Prandtl 6.3 More on the Reynolds Number 6.4 Classical Flat Plate Forced Convection Correlation: Uniform Surface Temperature, Laminar Flow 6.5 Empirical Correction to Classical Flat Plate Forced Convection Correlation, Laminar Flow 6.6 Application Example: Winged Aluminum Heat Sink 6.7 Classical Flat Plate Forced Convection Correlation: Uniform Heat Rate Per Unit Area, Laminar Flow 6.8 Classical Flat Plate (Laminar) Forced Convection Correlation Extended to Small Reynolds Numbers: Uniform Surface Temperature 6.9 Circuit Boards: Adiabatic Heat Transfer Coefficients and Adiabatic Temperatures 6.10 Adiabatic Heat Transfer Coefficient and Temperature According to Faghri et al. 6.11 Adiabatic Heat Transfer Coefficient and Temperature for Low-Profile Components According to Wirtz 6.12 Application Example: Circuit Board with 0.82 in.x0.24 In.x0.123 in. Convecting Modules Exercises Chapter 7: Forced Convective Heat Transfer II: Ducts, Extrusions, and Pin Fin Arrays 7.1 Boundary Layer Considerations 7.2 A Convection/Conduction Model for Ducts and Heat Sinks 7.3 Conversion of an Isothermal Heat Transfer Coefficient from Referenced-to-inlet Air to Referenced-to-local Air 7.4 Nusselt Number for Fully Developed Laminar Duct Flow Corrected for Entry Length Effects 7.5 A Newer Nusselt Number for Laminar Flow in Rectangular (Cross-Section) Ducts with Entry Length Effects 7.6 Nusselt Number for Turbulent Duct Flow 7.7 Application Example: Two-Sided Extruded Heat Sink 7.8 Flow Bypass Effects According to Jonsson and Moshfegh 7.9 Application Example: Heat Sink in a Circuit Board Channel using the Flow Bypass Method of Lee 7.10 In-Line and Staggered Pin Fin Heat Sinks 7.11 Application Example: Thermal Resistance of a Pin Fin Heat Sink using the 7.12 Lee’s Flow Bypass Adapted to Non-Zero Bypass Resistance Problem, Compared Empirical Method of Jonsson & Moshfegh Exercises Chapter 8: Natural Convection Heat Transfer I: Plates 8.1 Dimensionless Numbers: Nusselt and Grashof 8.2 Classical Flat Plate Correlations 8.3 Small Device Flat Plate Correlations 8.4 Application Example: Vertical Convecting Plate 8.5 Application Example: Vertical Convecting and Radiating Plate 8.6 Vertical Parallel Plate Correlations Applicable to Circuit Board Channels 8.7 Application Example: Vertical Card Assembly 8.8 Recommended Use of Vertical Channel Models in Sealed and Vented Enclosures 8.9 Conversion of Isothermal Wall Channel Heat Transfer Coefficients from Referenced-to-inlet Air to Referenced-to-local Air 8.10 Application Example: Enclosure with Circuit Boards - Enclosure Temperatures Inly 8.11 Application Example: Enclosure with Circuit Boards - Circuit Board Temperatures Only 8.12 Application Example: Enclosure with Circuit Boards, Comparison of Sections 8.10 and 8.11 Approximate Results with CFD 8.13 Illustrative example: Metal-walled enclosure, ten PCBs 8.14 Illustrative Example: Metal-Walled Enclosure with Heat Dissipation Provided by Several Wire-Wound Resistors Exercises Chapter 9: Natural Convection Heat Transfer II: Heat Sinks 9.1 Heat Sink Geometry and Some Nomenclature 9.2 A rectangular U-channel Correlation from Van de Pol and Tierney 9.3 Design Plots Representing the Van de Pol and Tierney Correlation 9.4 A Few Useful Formulae 9.5 Application Example: Natural Convection Cooled, Vertically Oriented Heat Sink 9.6 Application Example: Natural Convection Cooled, Nine-fin Heat Sink with Calculations Compared to Test Data Exercises Chapter 10: Thermal Radiation Heat Transfer 10.1 Blackbody Radiation 10.2 Spacial Effects and the View Factor 10.3 Application Example: View Factors for Finite Parallel Plates 10.4 Nonblack Surfaces 10.5 The Radiation Heat Transfer Coefficient 10.6 Application Example: Radiation and Natural Convection Cooled Enclosure with Circuit Boards - Enclosure Temperatures Only 10.7 Radiation for Multiple Gray-body Surfaces 10.8 Hottel Script F ( F ) Method for Gray-body Radiation Exchange 10.9 Application Example: Gray-body Circuit Boards Analyzed as Infinite Parallel Plates 10.10 Application Example: Gray-body Circuit Boards Analyzed as Finite Parallel Plates 10.11 Thermal Radiation Networks 10.12 Thermal Radiation Shielding for Rectangular U-channels (Fins) 10.13 Application Example: Natural Convection and Radiation Cooled, Vertically Oriented Heat Sink (see Section 9.4) 10.14 Application Example: Natural Convection and Radiation Cooled Nine-fin Heat Sink - Calculations Compared to Test Data 10.15 Application Example: Natural Convection and Radiation Cooled Nine-fin Heat Sink Analyzed for a Temperature Rise not Included in Figure 9.2 10.16 Illustrative Example: Natural Convection and Radiation Cooled Nine-fin Heat Sink Analyzed for Optimum Number of Fins Exercises Chapter 11: Conduction I: Basics 11.1 Fourier’s Law of Heat Conduction 11.2 Application Example: Mica Insulator with Thermal Paste 11.3 Thermal Conduction Resistance of Some Simple Structures 11.4 The One-dimensional Differential Equation for Heat Conduction 11.5 Application Example: Aluminum Core Board with Negligible Air Cooling 11.6 Application Example: Aluminum Core Board with Forced Air Cooling 11.7 Application Example: Simple Heat Sink 11.8 Fin Efficiency 11.9 Differential Equations for More than One Dimension 11.10 Physics of Thermal Conductivity of Solids 11.11 Thermal Conductivity of Circuit Boards (Epoxy-glass Laminates) 11.12 Application Example: Epoxy-glass Circuit Board with Copper 11.13 Thermal Interface Resistance 11.14 Application Example: Interface Resistance for an Aluminum Joint Exercises Chapter 12: Conduction II: Spreading Resistance 12.1 The Spreading Problem 12.2 Fixed Spreading Angle Theories 12.3 Circular-source, Semi-infinite Media Solution, Uniform Flux, Average Source Temperature, by Carslaw and Jaeger (1986) 12.4 Rectangular-source, Time-dependent, Semi-infinite Media Solution, Uniform Flux, Peak Source Temperature by Joy and Schlig (1970) 12.5 Other Circular Source Solutions 12.6 Rectangular Source on Rectangular, Finite-media with One Convecting Surface: Theory 12.7 Rectangular Source on Rectangular, Finite-media: Design Curves 12.8 Application Example: Heat Source Centered on a Heat Sink (Ellison, 2003) 12.9 Illustration Example: Spreading Contribution to Forced Air Cooled Heat Sink Exercises Chapter 13: Additional Mathematical Methods 13.1 Thermal Networks: Steady-state Theory 13.2 Illustrative Example: A Simple Steady-state, Thermal Network Problem, Gauss-Seidel and Simultaneous Equation Solutions Compared 13.3 Thermal Networks: Time-dependent Theory 13.4 Illustrative Example: A Simple Time-dependent, Thermal Network Problem 13.5 Finite Difference Theory for Conduction with Newtonian Cooling 13.6 Programming the Pressure/Airflow Network Problem 13.7 Finite Element Theory - the Concept of the Calculus of Variations 13.8 Finite Element Theory - Derivation of the One-dimensional Euler-Lagrange Equation 13.9 Finite Element Theory - Application of the One-dimensional Euler-Lagrange Equation to a Heat Conduction Problem Appendix i: Physical Properties of Dry Air at Atmospheric Pressure Appendix ii: Radiation Emissivity at Room Temperature Appendix iii: Thermal Conductivity of Some Common Electronic Packaging Materials Appendix iv: Some Properties of Bessel Functions Appendix v: Some Properties of the Dirac Delta Function Appendix vi: Fourier Coefficients for a Rectangular Source Appendix vii: Derivation of the Green’s Function Properties for the Spreading Problem of a Rectangular Source and Substrate - Method A Appendix viii: Derivation of the Green’s Function Properties for the Spreading Problem of a Rectangular Source and Substrate - Method B Appendix ix: Proof of Reciprocity for the Steady-state Green’s Function; Proof of Reciprocity for the Three-dimensional, Time-dependent Green’s Function Appendix x: Finned Surface to Flat Plate h Conversion Appendix xi: Some Conversion Factors Appendix xii: Altitude Effects for Fan Driven Airflow and Forced Convection Cooled Enclosures xii.1: Derivation of the Fan Laws xii.2: Air Presssure at an Elevated Altitude xii.3: The Ideal Gas Law and an Air Density Model at Altitude xii.4: Fan and System Interaction at Altitude xii.5: Appication Example - Fan Cooled Heat Sink Appendix xiii: Altitude Effects for Buoyancy Driven Airflow and Natural Convection Cooled Enclosures xiii.1: Derivation of Air Temperature Rise Formula xiii.2: Derivation of Air Temperature Rise using Average Bulk Temperature for Properties xiii.3: Head Loss Due to Buoyancy Pressure xiii.4: Matching System Loss to Buoyancy Pressure Head xiii.5: Application Example - Buoyancy Draft Cooled Enclosure from Section 5.3 xiii.6: Application Example - Vertical Convecting Plte from Section 8.4 xiii.7: Comments Concerning Other Heat Transfer Coefficients at an Elevated Altitude Bibliography Index