ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Theranostic Bionanomaterials

دانلود کتاب مواد بیونومتریال ترانوستیک

Theranostic Bionanomaterials

مشخصات کتاب

Theranostic Bionanomaterials

ویرایش:  
نویسندگان:   
سری: Micro and Nano Technologies 
ISBN (شابک) : 0128153415, 9780128153413 
ناشر: Elsevier 
سال نشر: 2019 
تعداد صفحات: 498 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 مگابایت 

قیمت کتاب (تومان) : 37,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Theranostic Bionanomaterials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مواد بیونومتریال ترانوستیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مواد بیونومتریال ترانوستیک



Theranostic Bionanomaterials یک مطالعه ارزشمند از پیشرفت‌ها و روندهای اخیر در توسعه و کاربرد مواد زیستی کاربردی برای کاربردهای ترانوستیک است. این کتاب طراحی و خصوصیات نانوموادی را توصیف می‌کند که خواص فیزیکی، شیمیایی و بیولوژیکی متمایزی را نشان می‌دهند و در مورد چگونگی دستکاری دقیق ریزمحیط‌های سلولی معماری، فیزیکی و بیوشیمیایی در محیط آزمایشگاهی این نانومواد کاربردی بحث می‌کند. علاوه بر این، نحوه عملکرد آنها به عنوان حامل عوامل تشخیصی یا درمانی را پوشش می دهد، بنابراین مسیرها یا استراتژی های جدیدی برای تشخیص و درمان بیماری ارائه می دهد. فصل‌های خاص در مورد تحویل پروتئین، دارورسانی، بازسازی بافت، تصویربرداری زیستی، تشخیص زیستی و موارد دیگر بحث می‌کنند.

این کتاب یک منبع حیاتی برای کسانی خواهد بود که در تحقیقات پیشرفته در زمینه بیونانومادهای ترانوستیک فعالیت دارند.


توضیحاتی درمورد کتاب به خارجی

Theranostic Bionanomaterials is an invaluable study of recent advances and trends in the development and application of functional bionanomaterials for theranostic applications. This book describes the design and characterization of nanomaterials which exhibit distinctive physical, chemical and biological properties and discusses how these functional nanomaterials enable the precise manipulation of architectural, physical and biochemical cell microenvironments in vitro. In addition, it covers how they can act as the carriers of diagnostic or therapeutic agents, thus providing new pathways or strategies for disease diagnosis and treatment. Specific chapters discuss protein delivery, drug delivery, tissue regeneration, bioimaging, biodetection, and much more.

This book will be a critical resource for those involved in cutting-edge research in theranostics bionanomaterial.



فهرست مطالب

Cover
Theranostic Bionanomaterials
Copyright
List of Contributors
About the Editors
Part I: Fundamentals of Theranostic Bionanomaterials
1 Biodistribution, Excretion, and Toxicity of Inorganic Nanoparticles
	Abbreviations
	1.1 Introduction: Inorganic Nanoparticles and Their Interest in Medicine
	1.2 Physicochemical Modifications of Inorganic Nanoparticles in Physiological Environments Determine Their Effects: Safety ...
		1.2.1 Effects of the Agglomeration and Aggregation of Nanoparticles
		1.2.2 Effects of the Adsorption of (Macro)Molecules
		1.2.3 Effects of the Corrosion and Degradation of Nanoparticles
	1.3 Physicochemical Modifications of Inorganic Nanoparticles Determine Their Biodistribution and Fate
		1.3.1 Biodistribution: Nanoparticles Entering the Body
		1.3.2 Subcellular Localization: Nanoparticles Entering the Cells
		1.3.3 Long-Term Effects
	1.4 Outlook and Conclusion
	References
2 Biodistribution, Excretion, and Toxicity of Nanoparticles
	2.1 Introduction
	2.2 Biodistribution
		2.2.1 Effect of Surface Material
			2.2.1.1 PEGylation
			2.2.1.2 Charge
		2.2.2 Effect of Nanoparticle Size
		2.2.3 Effect of Nanoparticle Shape
		2.2.4 Effect of Nanoparticle Rigidity
		2.2.5 Effect of Administration Route
	2.3 Excretion
		2.3.1 Mononuclear Phagocytic System Clearance
		2.3.2 Renal Clearance
	2.4 Toxicity
		2.4.1 Liver Toxicity
		2.4.2 Kidney Toxicity
		2.4.3 Heart Toxicity
		2.4.4 Brain Toxicity
		2.4.5 Lung Toxicity
	2.5 Challenges and Perspectives
	References
3 Nanoparticle Interaction With Immune Cells for Nanoparticle-Mediated (Anticancer) Immunotherapy
	3.1 Introduction
		3.1.1 Nanoparticles
		3.1.2 Innate Immune System
		3.1.3 Adaptive Immune System
		3.1.4 Immunotherapy
		3.1.5 Nanoparticles as Anticancer Drug-Delivery System
	3.2 Nanoparticles as Immunotherapy
		3.2.1 Complementing Nanoparticle-Based Therapies
	3.3 Nanoparticles as Vaccines Against Cancer
	3.4 Nanoparticles as Diagnostics
	3.5 Challenges
		3.5.1 Modulating Innate and Adaptive Immunity
		3.5.2 Nanoparticle Characteristics
	3.6 Concluding Remarks
	References
4 Clinical Translation of Nanomaterials
	4.1 Diagnostics
		4.1.1 Carbon Nanotubes
		4.1.2 Nanoparticles
		4.1.3 Quantum Dots
	4.2 Therapeutics
		4.2.1 Polymerics
		4.2.2 Liposomes
	4.3 Tissue Engineering
		4.3.1 Scaffolds
		4.3.2 Hydrogels
	4.4 Conclusion and Perspective
	Acknowledgment
	References
5 Synthetic Receptors With Bioaffinity for Biomedical Applications
	5.1 Introduction
	5.2 Synthetic Receptors for Biomedicines
		5.2.1 Toxin Neutralization
		5.2.2 Bacteria Inhibition
		5.2.3 Biomedical Imaging
		5.2.4 Cancer Therapy
		5.2.5 Cell Isolation
		5.2.6 Other Potentials
	5.3 Conclusion and Perspective
	Acknowledgments
	References
Part II: Biomedical Applications of Theranostic Bionanomaterials
Section I: Drug Delivery and Tissue Engineering
6 Calcium Phosphate Nanoparticle-Based Systems for Therapeutic Delivery
	6.1 Introduction
	6.2 Therapeutics Delivered Using Calcium Phosphate Nanoparticles
		6.2.1 Type of Therapeutics
		6.2.2 Intracellular Uptake and Release Mechanism
		6.2.3 Factors Affecting Drug Release Rates
	6.3 Types of Calcium Phosphate Nanoparticles
		6.3.1 Bare Calcium Phosphate Nanoparticles
			6.3.1.1 Core
			6.3.1.2 Core–Shell
			6.3.1.3 Multilayer
		6.3.2 Coated Calcium Phosphate Nanoparticles
			6.3.2.1 Lipid-Coated Calcium Phosphate Nanoparticles
			6.3.2.2 Polymer Coating
	6.4 Conclusion and Perspectives
	Acknowledgments
	References
7 Graphene and Graphene Oxide for Tissue Engineering and Regeneration
	7.1 Introduction
	7.2 Properties and Applications in Tissue Engineering
		7.2.1 Mechanical Properties and Applications
		7.2.2 Electrical Properties and Applications
		7.2.3 Chemical Properties and Applications
		7.2.4 Other Properties and Applications
	7.3 Conclusion
	References
8 Nanomaterial Design and Tests for Neural Tissue Engineering
	8.1 Design of Nanomaterials for Neural Tissue Engineering
	8.2 Nanomaterials for the Repair of Spinal Cord Injury
		8.2.1 Design of the Nanomaterials for Repairing the Spinal Cord Injury
		8.2.2 Nanomaterials Combined With Growth Factors for Repairing Spinal Cord Injury
		8.2.3 Nanomaterials Combined With Cell Therapy for Repairing Spinal Cord Injury
	8.3 Nanomaterials for the Repair of Peripheral Nerve Injury
		8.3.1 Design of the Nerve Conduits for Repairing the Peripheral Nerve Injury
		8.3.2 Nanomaterials Combined With Growth Factors for Repairing Peripheral Nerve Injury
		8.3.3 Nanomaterials Combined With Cell Therapy for Repairing Peripheral Nerve Injury
	8.4 Conclusions
	Acknowledgments
	References
	Further Reading
9 Nanomaterials for Wound Healing: Scope and Advances
	9.1 Introduction
	9.2 Brief Introduction to Bionanomaterials on Wound Healing
	9.3 Characteristics of Wound Healing: Normal and Abnormal
	9.4 The Mechanism and Advantages of Bionanomaterials in Wound Healing
		9.4.1 Antibacterial and Antiinflammatory
		9.4.2 Bionanomaterials Can Promote Wound Healing Due to Extracellular Matrix Regulation Directly
		9.4.3 Bionanomaterials Can Support Skin Regeneration by Promoting Stem Cell Growth
		9.4.4 Bionanomaterials Can Modulate Growth Factors in the Wound Site
	9.5 Potential Scope of Bionanomaterials in Wound Healing in Clinical Practice
		9.5.1 The Application on Skin Wound Healing
			9.5.1.1 Application of Bionanomaterials in Dressings
			9.5.1.2 Application of Bionanomaterials in Suture Fabrication
			9.5.1.3 Use of Bionanomaterials and Keloid
		9.5.2 Bionanomaterials in Promoting Bone Fracture and Tendon Healing
		9.5.3 Bionanomaterials in Promoting Neuron Repair
		9.5.4 The Bionanomaterials Promoting Healing in the Abdomen
	9.6 Obstacles to Bionanomaterial Application
	9.7 Outlook of Bionanomaterials for Wound Healing in the Future
	References
10 Advanced Nanovaccines for Immunotherapy Applications: From Concept to Animal Tests
	10.1 Introduction
		10.1.1 Immunotherapy
		10.1.2 Nanotechnology for Immunotherapy
	10.2 Design of the Systems
		10.2.1 Size
		10.2.2 Shape
		10.2.3 Charge
		10.2.4 Flexibility/Elastic Modulus
		10.2.5 Surface Chemistry and Roughness
		10.2.6 Adjuvants
		10.2.7 Position of the Antigens
	10.3 In Vitro Assessment
		10.3.1 Murine Cells
		10.3.2 Human Cells
	10.4 In Vivo Models and Efficacy
		10.4.1 Immunostimulation—Cancer
		10.4.2 Immunomodulation—Rheumatoid Arthritis, Experimental Autoimmune Encephalomyelitis, Diabetes
	10.5 Conclusions
	Acknowledgments
	References
Section II: Bionanomaterials for Diagnostics
11 Two-Dimensional Nanomaterials in Cancer Theranostics
	11.1 Introduction
	11.2 Theranostic Payloads
		11.2.1 Biomedical Imaging
			11.2.1.1 Optical Imaging
			11.2.1.2 Magnetic Resonance Imaging
			11.2.1.3 X-Ray Computed Tomography Imaging
			11.2.1.4 Positron Emission Tomography Imaging
			11.2.1.5 Photoacoustic Imaging
			11.2.1.6 Others
		11.2.2 Therapeutics
			11.2.2.1 Chemotherapy
			11.2.2.2 Photothermal Therapy
			11.2.2.3 Photodynamic Therapy
			11.2.2.4 Other Therapies
	11.3 Theranostic Two-Dimensional Nanomaterials
		11.3.1 Graphene and Its Derivatives
			11.3.1.1 Gene and Drug Delivery
			11.3.1.2 Graphene as a Phototherapeutic Agent
		11.3.2 Transition Metal Dichalcogenides
			11.3.2.1 Transition Metal Dichalcogenides as Imaging Agents
			11.3.2.2 Transition Metal Dichalcogenides for Gene and Drug Delivery
			11.3.2.3 Transition Metal Dichalcogenides as Photothermal Agents
		11.3.3 Metal-Organic Frameworks
		11.3.4 Graphitic Carbon Nitride
		11.3.5 Black Phosphorus
		11.3.6 Other Two-Dimensional Nanomaterials
	11.4 Summary and Future Perspectives
	References
12 Polymeric Micelles for Tumor Theranostics
	12.1 Introduction
	12.2 Polymeric Micelles for Tumor Imaging
		12.2.1 Polymeric Micelles for Optical Imaging
		12.2.2 Polymeric Micelles for Tumor Magnetic Resonance Imaging
		12.2.3 Polymeric Micelles for Tumor Multimodality Imaging
		12.2.4 Polymeric Micelles for Tumor Theranostics
	12.3 Conclusions and Perspective
	Acknowledgments
	References
13 Theranostic Biomaterials for Regulation of the Blood–Brain Barrier
	Abbreviations
	13.1 Introduction
	13.2 The Blood–Brain Barrier
		13.2.1 The Blood–Brain Barrier’s Structure and Function
		13.2.2 Role of the Blood–Brain Barrier in Central Nervous System Diseases
	13.3 Explaining Theranostic Agents—A Growing Concept
	13.4 Nanobiomaterials Used to Repair and/or Regenerate the Blood–Brain Barrier
		13.4.1 Scaffolds
		13.4.2 Carbon Nanotubes
	13.5 Nanobiomaterials Used as Imaging and Diagnosing Agents at the Blood–Brain Barrier
		13.5.1 Gold Nanoparticles
		13.5.2 Quantum Dots
		13.5.3 Superparamagnetic Iron–Oxide Nanoparticles
	13.6 Conclusion and Future Perspectives
	Acknowledgments
	References
14 Upconversion Nanomaterials for Near-infrared Light-Mediated Theranostics
	14.1 Introduction
	14.2 Upconversion Nanoparticle Design Considerations
		14.2.1 Luminescence Mechanism of Upconversion Nanoparticles
		14.2.2 Synthesis and Surface Engineering
		14.2.3 Upconversion Luminescence Tuning
	14.3 Upconversion Nanoprobes for Biosensing
		14.3.1 In Vitro Assays of Biomarkers
		14.3.2 In Vivo Detection of Biomolecules
	14.4 In Vivo Bioimaging Using Upconversion Nanoparticles
		14.4.1 Near-Infrared Light-based Optical Imaging
		14.4.2 Upconversion Nanoparticles for Multimodel Bioimaging
	14.5 Photon Upconversion-Mediated Medical Therapy
		14.5.1 Near-Infrared Light-Triggered Drug Delivery
		14.5.2 Near-Infrared Light-Activated Photodynamic Therapy
		14.5.3 Near-Infrared Light-Mediated Optogenetic Therapy
	14.6 Toxicity Studies of Upconversion Nanoparticles
	14.7 Conclusion and Outlook
	References
15 Biofunctional Magnetic Nanomaterials for Diagnosis, Therapy, and Theranostic Applications
	15.1 Introduction
	15.2 Synthesis and Modification of Biofunctional Magnetic Nanomaterials
		15.2.1 Synthesis of Magnetic Nanomaterials
		15.2.2 Hybridization of Magnetic Nanoparticles with Different Morphologies
	15.3 Magnetic Resonance Imaging-Based Multimodal Diagnosis
		15.3.1 Magnetic Resonance Imaging–Computed Tomography Bimodal Diagnosis
		15.3.2 Magnetic Resonance Imaging–ECT Bimodal Diagnosis
		15.3.3 Magnetic Resonance Imaging-Based Multimodal Diagnosis
	15.4 Magnetic Nanoparticles for Hyperthermia-Based Therapy
		15.4.1 Magnetic Hyperthermia Therapy
		15.4.2 Photothermal Therapy
		15.4.3 Combined Therapy
	15.5 Magnetic Nanoparticles for Theranostic Treatment
	15.6 Challenges and Conclusions
	Acknowledgments
	References
Section III: Bionanomaterials for Biosensing and bioimaging
16 AIEgen-Based Fluorescent Nanoparticles for Long-Term Cell Tracing
	16.1 Introduction
	16.2 Fabrication of AIEgen-Based Nanoparticles
		16.2.1 AIEgens
		16.2.2 Introduce AIEgens Into Nanoparticles
			16.2.2.1 Noncovalent Binding Method
			16.2.2.2 Covalent Binding Method
		16.2.3 Functionalization of the AIEgen-Based Nanoparticles
			16.2.3.1 Enhancing Targeting Efficiency
			16.2.3.2 Enabling Multifunctionality
	16.3 Long-Term Cell Tracing With AIEgen-Based Fluorescent Nanoparticles
		16.3.1 In Vitro Cell Tracing
		16.3.2 In Vivo Long-Term Cell Tracing
	16.4 Conclusions and Perspectives
	References
17 Multimodal Carbon Dots as Biosensors
	17.1 Introduction
	17.2 Classification of Carbon Dots and Origins of Photoluminescence
		17.2.1 Classification and Nomenclature of Carbon Dots
		17.2.2 Origins of Photoluminescence of Carbon Dots
			17.2.2.1 Quantum Confinement Effect and Collective Exciton Effect
			17.2.2.2 Surface/Edge State of Graphene Quantum Dots
	17.3 Synthesis of Carbon Dots
		17.3.1 “Top-Down” Approaches
			17.3.1.1 Laser Ablation
			17.3.1.2 Arc Discharge
			17.3.1.3 Electrochemical Carbonization
		17.3.2 “Bottom-Up” Approaches
			17.3.2.1 Pyrolysis—Solvothermal and Hydrothermal Carbonization
			17.3.2.2 Microwave/Ultrasonic-Assisted Method
			17.3.2.3 Template-Supported Method
	17.4 Spectroscopic Properties of Carbon Dots
		17.4.1 UV Absorption
		17.4.2 Photoluminescence
		17.4.3 Upconversion Photoluminescence
		17.4.4 Phosphorescence
	17.5 Biomedical Applications of Carbon Dots
		17.5.1 Biocompatibility and Bioimaging of Carbon Dots
		17.5.2 Carbon Dots as Biosensors
		17.5.3 Theranostic Carbon Dots
	17.6 Conclusion
	References
18 Bionanomaterials as Imaging Contrast Agents
	18.1 Introduction
	18.2 Magnetic Contrast-Enhancing Bionanomaterials
		18.2.1 Magnetic Resonance Imaging
		18.2.2 Magnetic Particle Imaging
		18.2.3 Magnetomotive Imaging
	18.3 Optical Contrast-Enhancing Bionanomaterials
		18.3.1 Luminescence
		18.3.2 Fluorescence Resonance Energy Transfer
		18.3.3 Raman
		18.3.4 Optical Coherence Tomography
		18.3.5 Photoacoustic Imaging
	18.4 Acoustic Contrast-Enhancing Bionanomaterials
	18.5 X-Ray Contrast-Enhancing Bionanomaterials
	18.6 Conclusions
	References
19 Nucleotide Aptamers as Theranostic Biomaterials
	19.1 Introduction
	19.2 The Structure of Aptamers and Complexes
		19.2.1 Primary Aptamer Structures
		19.2.2 Cocrystal Structures of Aptamers With Ligands
		19.2.3 Aptamer Structure Prediction
	19.3 Applications of Aptamers
		19.3.1 Therapeutical Nucleotide Aptamers
			19.3.1.1 Aptamers for Cancer Therapies
				AS1411
				NOX-A12
			19.3.1.2 Aptamers Against Age-Related Macular Degeneration
				Macugen
			19.3.1.3 Aptamers for Antithrombotic Therapy
			19.3.1.4 Aptamers Against Other Diseases
		19.3.2 Aptamer–Drug Conjugates for Targeted Therapies
			19.3.2.1 Aptamer–Chemotherapeutic Conjugates
			19.3.2.2 Targeted Drug-Delivery Vehicles Conjugated With Aptamers
		19.3.3 Biosensors Made From Aptamers
			19.3.3.1 Electrochemical Detection
			19.3.3.2 Optical Detection
			19.3.3.3 Other Detection Methods
		19.3.4 Diagnostic Applications
	19.4 Conclusion and Future Perspective
	Acknowledgments
	References
20 Electronic Structures of Alkaline Rare Earth Fluoride-Based Upconversion Nanomaterials
	20.1 Introduction
	20.2 Calculation Setup
	20.3 Results and Discussions
	20.4 β-NaYF4
	20.5 β-NaGdF4
	20.6 β-NaLuF4
	20.7 Summary
	Acknowledgments
	References
21 Lanthanide-Based Magnetic Resonance Imaging Metal-Responsive Agent Overview
	21.1 Introduction
	21.2 Gadolinium Magnetic Resonance Imaging-Responsive Agents
		21.2.1 The Relaxivity Change Mechanism
		21.2.2 Survey of Gd-Based Magnetic Resonance Imaging Sensors
			21.2.2.1 Modulation of the Inner Sphere Number of Water Molecules
			21.2.2.2 Modulation of Rotational Tumbling Time
	21.3 Survey of the Paramagnetic Chemical Exchange Saturation Transfer Responsive Agent
		21.3.1 Zinc and Calcium Chemical Exchange Saturation Transfer Responsive Agent
	21.4 Conclusions and Future Perspectives
	References
Index
Back Cover




نظرات کاربران