دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Wenguo Cui (editor). Xin Zhao (editor)
سری: Micro and Nano Technologies
ISBN (شابک) : 0128153415, 9780128153413
ناشر: Elsevier
سال نشر: 2019
تعداد صفحات: 498
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Theranostic Bionanomaterials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد بیونومتریال ترانوستیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Theranostic Bionanomaterials یک مطالعه ارزشمند از پیشرفتها و روندهای اخیر در توسعه و کاربرد مواد زیستی کاربردی برای کاربردهای ترانوستیک است. این کتاب طراحی و خصوصیات نانوموادی را توصیف میکند که خواص فیزیکی، شیمیایی و بیولوژیکی متمایزی را نشان میدهند و در مورد چگونگی دستکاری دقیق ریزمحیطهای سلولی معماری، فیزیکی و بیوشیمیایی در محیط آزمایشگاهی این نانومواد کاربردی بحث میکند. علاوه بر این، نحوه عملکرد آنها به عنوان حامل عوامل تشخیصی یا درمانی را پوشش می دهد، بنابراین مسیرها یا استراتژی های جدیدی برای تشخیص و درمان بیماری ارائه می دهد. فصلهای خاص در مورد تحویل پروتئین، دارورسانی، بازسازی بافت، تصویربرداری زیستی، تشخیص زیستی و موارد دیگر بحث میکنند.
این کتاب یک منبع حیاتی برای کسانی خواهد بود که در تحقیقات پیشرفته در زمینه بیونانومادهای ترانوستیک فعالیت دارند.
Theranostic Bionanomaterials is an invaluable study of recent advances and trends in the development and application of functional bionanomaterials for theranostic applications. This book describes the design and characterization of nanomaterials which exhibit distinctive physical, chemical and biological properties and discusses how these functional nanomaterials enable the precise manipulation of architectural, physical and biochemical cell microenvironments in vitro. In addition, it covers how they can act as the carriers of diagnostic or therapeutic agents, thus providing new pathways or strategies for disease diagnosis and treatment. Specific chapters discuss protein delivery, drug delivery, tissue regeneration, bioimaging, biodetection, and much more.
This book will be a critical resource for those involved in cutting-edge research in theranostics bionanomaterial.
Cover Theranostic Bionanomaterials Copyright List of Contributors About the Editors Part I: Fundamentals of Theranostic Bionanomaterials 1 Biodistribution, Excretion, and Toxicity of Inorganic Nanoparticles Abbreviations 1.1 Introduction: Inorganic Nanoparticles and Their Interest in Medicine 1.2 Physicochemical Modifications of Inorganic Nanoparticles in Physiological Environments Determine Their Effects: Safety ... 1.2.1 Effects of the Agglomeration and Aggregation of Nanoparticles 1.2.2 Effects of the Adsorption of (Macro)Molecules 1.2.3 Effects of the Corrosion and Degradation of Nanoparticles 1.3 Physicochemical Modifications of Inorganic Nanoparticles Determine Their Biodistribution and Fate 1.3.1 Biodistribution: Nanoparticles Entering the Body 1.3.2 Subcellular Localization: Nanoparticles Entering the Cells 1.3.3 Long-Term Effects 1.4 Outlook and Conclusion References 2 Biodistribution, Excretion, and Toxicity of Nanoparticles 2.1 Introduction 2.2 Biodistribution 2.2.1 Effect of Surface Material 2.2.1.1 PEGylation 2.2.1.2 Charge 2.2.2 Effect of Nanoparticle Size 2.2.3 Effect of Nanoparticle Shape 2.2.4 Effect of Nanoparticle Rigidity 2.2.5 Effect of Administration Route 2.3 Excretion 2.3.1 Mononuclear Phagocytic System Clearance 2.3.2 Renal Clearance 2.4 Toxicity 2.4.1 Liver Toxicity 2.4.2 Kidney Toxicity 2.4.3 Heart Toxicity 2.4.4 Brain Toxicity 2.4.5 Lung Toxicity 2.5 Challenges and Perspectives References 3 Nanoparticle Interaction With Immune Cells for Nanoparticle-Mediated (Anticancer) Immunotherapy 3.1 Introduction 3.1.1 Nanoparticles 3.1.2 Innate Immune System 3.1.3 Adaptive Immune System 3.1.4 Immunotherapy 3.1.5 Nanoparticles as Anticancer Drug-Delivery System 3.2 Nanoparticles as Immunotherapy 3.2.1 Complementing Nanoparticle-Based Therapies 3.3 Nanoparticles as Vaccines Against Cancer 3.4 Nanoparticles as Diagnostics 3.5 Challenges 3.5.1 Modulating Innate and Adaptive Immunity 3.5.2 Nanoparticle Characteristics 3.6 Concluding Remarks References 4 Clinical Translation of Nanomaterials 4.1 Diagnostics 4.1.1 Carbon Nanotubes 4.1.2 Nanoparticles 4.1.3 Quantum Dots 4.2 Therapeutics 4.2.1 Polymerics 4.2.2 Liposomes 4.3 Tissue Engineering 4.3.1 Scaffolds 4.3.2 Hydrogels 4.4 Conclusion and Perspective Acknowledgment References 5 Synthetic Receptors With Bioaffinity for Biomedical Applications 5.1 Introduction 5.2 Synthetic Receptors for Biomedicines 5.2.1 Toxin Neutralization 5.2.2 Bacteria Inhibition 5.2.3 Biomedical Imaging 5.2.4 Cancer Therapy 5.2.5 Cell Isolation 5.2.6 Other Potentials 5.3 Conclusion and Perspective Acknowledgments References Part II: Biomedical Applications of Theranostic Bionanomaterials Section I: Drug Delivery and Tissue Engineering 6 Calcium Phosphate Nanoparticle-Based Systems for Therapeutic Delivery 6.1 Introduction 6.2 Therapeutics Delivered Using Calcium Phosphate Nanoparticles 6.2.1 Type of Therapeutics 6.2.2 Intracellular Uptake and Release Mechanism 6.2.3 Factors Affecting Drug Release Rates 6.3 Types of Calcium Phosphate Nanoparticles 6.3.1 Bare Calcium Phosphate Nanoparticles 6.3.1.1 Core 6.3.1.2 Core–Shell 6.3.1.3 Multilayer 6.3.2 Coated Calcium Phosphate Nanoparticles 6.3.2.1 Lipid-Coated Calcium Phosphate Nanoparticles 6.3.2.2 Polymer Coating 6.4 Conclusion and Perspectives Acknowledgments References 7 Graphene and Graphene Oxide for Tissue Engineering and Regeneration 7.1 Introduction 7.2 Properties and Applications in Tissue Engineering 7.2.1 Mechanical Properties and Applications 7.2.2 Electrical Properties and Applications 7.2.3 Chemical Properties and Applications 7.2.4 Other Properties and Applications 7.3 Conclusion References 8 Nanomaterial Design and Tests for Neural Tissue Engineering 8.1 Design of Nanomaterials for Neural Tissue Engineering 8.2 Nanomaterials for the Repair of Spinal Cord Injury 8.2.1 Design of the Nanomaterials for Repairing the Spinal Cord Injury 8.2.2 Nanomaterials Combined With Growth Factors for Repairing Spinal Cord Injury 8.2.3 Nanomaterials Combined With Cell Therapy for Repairing Spinal Cord Injury 8.3 Nanomaterials for the Repair of Peripheral Nerve Injury 8.3.1 Design of the Nerve Conduits for Repairing the Peripheral Nerve Injury 8.3.2 Nanomaterials Combined With Growth Factors for Repairing Peripheral Nerve Injury 8.3.3 Nanomaterials Combined With Cell Therapy for Repairing Peripheral Nerve Injury 8.4 Conclusions Acknowledgments References Further Reading 9 Nanomaterials for Wound Healing: Scope and Advances 9.1 Introduction 9.2 Brief Introduction to Bionanomaterials on Wound Healing 9.3 Characteristics of Wound Healing: Normal and Abnormal 9.4 The Mechanism and Advantages of Bionanomaterials in Wound Healing 9.4.1 Antibacterial and Antiinflammatory 9.4.2 Bionanomaterials Can Promote Wound Healing Due to Extracellular Matrix Regulation Directly 9.4.3 Bionanomaterials Can Support Skin Regeneration by Promoting Stem Cell Growth 9.4.4 Bionanomaterials Can Modulate Growth Factors in the Wound Site 9.5 Potential Scope of Bionanomaterials in Wound Healing in Clinical Practice 9.5.1 The Application on Skin Wound Healing 9.5.1.1 Application of Bionanomaterials in Dressings 9.5.1.2 Application of Bionanomaterials in Suture Fabrication 9.5.1.3 Use of Bionanomaterials and Keloid 9.5.2 Bionanomaterials in Promoting Bone Fracture and Tendon Healing 9.5.3 Bionanomaterials in Promoting Neuron Repair 9.5.4 The Bionanomaterials Promoting Healing in the Abdomen 9.6 Obstacles to Bionanomaterial Application 9.7 Outlook of Bionanomaterials for Wound Healing in the Future References 10 Advanced Nanovaccines for Immunotherapy Applications: From Concept to Animal Tests 10.1 Introduction 10.1.1 Immunotherapy 10.1.2 Nanotechnology for Immunotherapy 10.2 Design of the Systems 10.2.1 Size 10.2.2 Shape 10.2.3 Charge 10.2.4 Flexibility/Elastic Modulus 10.2.5 Surface Chemistry and Roughness 10.2.6 Adjuvants 10.2.7 Position of the Antigens 10.3 In Vitro Assessment 10.3.1 Murine Cells 10.3.2 Human Cells 10.4 In Vivo Models and Efficacy 10.4.1 Immunostimulation—Cancer 10.4.2 Immunomodulation—Rheumatoid Arthritis, Experimental Autoimmune Encephalomyelitis, Diabetes 10.5 Conclusions Acknowledgments References Section II: Bionanomaterials for Diagnostics 11 Two-Dimensional Nanomaterials in Cancer Theranostics 11.1 Introduction 11.2 Theranostic Payloads 11.2.1 Biomedical Imaging 11.2.1.1 Optical Imaging 11.2.1.2 Magnetic Resonance Imaging 11.2.1.3 X-Ray Computed Tomography Imaging 11.2.1.4 Positron Emission Tomography Imaging 11.2.1.5 Photoacoustic Imaging 11.2.1.6 Others 11.2.2 Therapeutics 11.2.2.1 Chemotherapy 11.2.2.2 Photothermal Therapy 11.2.2.3 Photodynamic Therapy 11.2.2.4 Other Therapies 11.3 Theranostic Two-Dimensional Nanomaterials 11.3.1 Graphene and Its Derivatives 11.3.1.1 Gene and Drug Delivery 11.3.1.2 Graphene as a Phototherapeutic Agent 11.3.2 Transition Metal Dichalcogenides 11.3.2.1 Transition Metal Dichalcogenides as Imaging Agents 11.3.2.2 Transition Metal Dichalcogenides for Gene and Drug Delivery 11.3.2.3 Transition Metal Dichalcogenides as Photothermal Agents 11.3.3 Metal-Organic Frameworks 11.3.4 Graphitic Carbon Nitride 11.3.5 Black Phosphorus 11.3.6 Other Two-Dimensional Nanomaterials 11.4 Summary and Future Perspectives References 12 Polymeric Micelles for Tumor Theranostics 12.1 Introduction 12.2 Polymeric Micelles for Tumor Imaging 12.2.1 Polymeric Micelles for Optical Imaging 12.2.2 Polymeric Micelles for Tumor Magnetic Resonance Imaging 12.2.3 Polymeric Micelles for Tumor Multimodality Imaging 12.2.4 Polymeric Micelles for Tumor Theranostics 12.3 Conclusions and Perspective Acknowledgments References 13 Theranostic Biomaterials for Regulation of the Blood–Brain Barrier Abbreviations 13.1 Introduction 13.2 The Blood–Brain Barrier 13.2.1 The Blood–Brain Barrier’s Structure and Function 13.2.2 Role of the Blood–Brain Barrier in Central Nervous System Diseases 13.3 Explaining Theranostic Agents—A Growing Concept 13.4 Nanobiomaterials Used to Repair and/or Regenerate the Blood–Brain Barrier 13.4.1 Scaffolds 13.4.2 Carbon Nanotubes 13.5 Nanobiomaterials Used as Imaging and Diagnosing Agents at the Blood–Brain Barrier 13.5.1 Gold Nanoparticles 13.5.2 Quantum Dots 13.5.3 Superparamagnetic Iron–Oxide Nanoparticles 13.6 Conclusion and Future Perspectives Acknowledgments References 14 Upconversion Nanomaterials for Near-infrared Light-Mediated Theranostics 14.1 Introduction 14.2 Upconversion Nanoparticle Design Considerations 14.2.1 Luminescence Mechanism of Upconversion Nanoparticles 14.2.2 Synthesis and Surface Engineering 14.2.3 Upconversion Luminescence Tuning 14.3 Upconversion Nanoprobes for Biosensing 14.3.1 In Vitro Assays of Biomarkers 14.3.2 In Vivo Detection of Biomolecules 14.4 In Vivo Bioimaging Using Upconversion Nanoparticles 14.4.1 Near-Infrared Light-based Optical Imaging 14.4.2 Upconversion Nanoparticles for Multimodel Bioimaging 14.5 Photon Upconversion-Mediated Medical Therapy 14.5.1 Near-Infrared Light-Triggered Drug Delivery 14.5.2 Near-Infrared Light-Activated Photodynamic Therapy 14.5.3 Near-Infrared Light-Mediated Optogenetic Therapy 14.6 Toxicity Studies of Upconversion Nanoparticles 14.7 Conclusion and Outlook References 15 Biofunctional Magnetic Nanomaterials for Diagnosis, Therapy, and Theranostic Applications 15.1 Introduction 15.2 Synthesis and Modification of Biofunctional Magnetic Nanomaterials 15.2.1 Synthesis of Magnetic Nanomaterials 15.2.2 Hybridization of Magnetic Nanoparticles with Different Morphologies 15.3 Magnetic Resonance Imaging-Based Multimodal Diagnosis 15.3.1 Magnetic Resonance Imaging–Computed Tomography Bimodal Diagnosis 15.3.2 Magnetic Resonance Imaging–ECT Bimodal Diagnosis 15.3.3 Magnetic Resonance Imaging-Based Multimodal Diagnosis 15.4 Magnetic Nanoparticles for Hyperthermia-Based Therapy 15.4.1 Magnetic Hyperthermia Therapy 15.4.2 Photothermal Therapy 15.4.3 Combined Therapy 15.5 Magnetic Nanoparticles for Theranostic Treatment 15.6 Challenges and Conclusions Acknowledgments References Section III: Bionanomaterials for Biosensing and bioimaging 16 AIEgen-Based Fluorescent Nanoparticles for Long-Term Cell Tracing 16.1 Introduction 16.2 Fabrication of AIEgen-Based Nanoparticles 16.2.1 AIEgens 16.2.2 Introduce AIEgens Into Nanoparticles 16.2.2.1 Noncovalent Binding Method 16.2.2.2 Covalent Binding Method 16.2.3 Functionalization of the AIEgen-Based Nanoparticles 16.2.3.1 Enhancing Targeting Efficiency 16.2.3.2 Enabling Multifunctionality 16.3 Long-Term Cell Tracing With AIEgen-Based Fluorescent Nanoparticles 16.3.1 In Vitro Cell Tracing 16.3.2 In Vivo Long-Term Cell Tracing 16.4 Conclusions and Perspectives References 17 Multimodal Carbon Dots as Biosensors 17.1 Introduction 17.2 Classification of Carbon Dots and Origins of Photoluminescence 17.2.1 Classification and Nomenclature of Carbon Dots 17.2.2 Origins of Photoluminescence of Carbon Dots 17.2.2.1 Quantum Confinement Effect and Collective Exciton Effect 17.2.2.2 Surface/Edge State of Graphene Quantum Dots 17.3 Synthesis of Carbon Dots 17.3.1 “Top-Down” Approaches 17.3.1.1 Laser Ablation 17.3.1.2 Arc Discharge 17.3.1.3 Electrochemical Carbonization 17.3.2 “Bottom-Up” Approaches 17.3.2.1 Pyrolysis—Solvothermal and Hydrothermal Carbonization 17.3.2.2 Microwave/Ultrasonic-Assisted Method 17.3.2.3 Template-Supported Method 17.4 Spectroscopic Properties of Carbon Dots 17.4.1 UV Absorption 17.4.2 Photoluminescence 17.4.3 Upconversion Photoluminescence 17.4.4 Phosphorescence 17.5 Biomedical Applications of Carbon Dots 17.5.1 Biocompatibility and Bioimaging of Carbon Dots 17.5.2 Carbon Dots as Biosensors 17.5.3 Theranostic Carbon Dots 17.6 Conclusion References 18 Bionanomaterials as Imaging Contrast Agents 18.1 Introduction 18.2 Magnetic Contrast-Enhancing Bionanomaterials 18.2.1 Magnetic Resonance Imaging 18.2.2 Magnetic Particle Imaging 18.2.3 Magnetomotive Imaging 18.3 Optical Contrast-Enhancing Bionanomaterials 18.3.1 Luminescence 18.3.2 Fluorescence Resonance Energy Transfer 18.3.3 Raman 18.3.4 Optical Coherence Tomography 18.3.5 Photoacoustic Imaging 18.4 Acoustic Contrast-Enhancing Bionanomaterials 18.5 X-Ray Contrast-Enhancing Bionanomaterials 18.6 Conclusions References 19 Nucleotide Aptamers as Theranostic Biomaterials 19.1 Introduction 19.2 The Structure of Aptamers and Complexes 19.2.1 Primary Aptamer Structures 19.2.2 Cocrystal Structures of Aptamers With Ligands 19.2.3 Aptamer Structure Prediction 19.3 Applications of Aptamers 19.3.1 Therapeutical Nucleotide Aptamers 19.3.1.1 Aptamers for Cancer Therapies AS1411 NOX-A12 19.3.1.2 Aptamers Against Age-Related Macular Degeneration Macugen 19.3.1.3 Aptamers for Antithrombotic Therapy 19.3.1.4 Aptamers Against Other Diseases 19.3.2 Aptamer–Drug Conjugates for Targeted Therapies 19.3.2.1 Aptamer–Chemotherapeutic Conjugates 19.3.2.2 Targeted Drug-Delivery Vehicles Conjugated With Aptamers 19.3.3 Biosensors Made From Aptamers 19.3.3.1 Electrochemical Detection 19.3.3.2 Optical Detection 19.3.3.3 Other Detection Methods 19.3.4 Diagnostic Applications 19.4 Conclusion and Future Perspective Acknowledgments References 20 Electronic Structures of Alkaline Rare Earth Fluoride-Based Upconversion Nanomaterials 20.1 Introduction 20.2 Calculation Setup 20.3 Results and Discussions 20.4 β-NaYF4 20.5 β-NaGdF4 20.6 β-NaLuF4 20.7 Summary Acknowledgments References 21 Lanthanide-Based Magnetic Resonance Imaging Metal-Responsive Agent Overview 21.1 Introduction 21.2 Gadolinium Magnetic Resonance Imaging-Responsive Agents 21.2.1 The Relaxivity Change Mechanism 21.2.2 Survey of Gd-Based Magnetic Resonance Imaging Sensors 21.2.2.1 Modulation of the Inner Sphere Number of Water Molecules 21.2.2.2 Modulation of Rotational Tumbling Time 21.3 Survey of the Paramagnetic Chemical Exchange Saturation Transfer Responsive Agent 21.3.1 Zinc and Calcium Chemical Exchange Saturation Transfer Responsive Agent 21.4 Conclusions and Future Perspectives References Index Back Cover