دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Gerhard Michler
سری: new mathematical monographs 14
ISBN (شابک) : 0521764912, 9780521764919
ناشر: Cambridge University Press
سال نشر: 2010
تعداد صفحات: 324
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 2 مگابایت
در صورت تبدیل فایل کتاب Theory of Finite Simple Groups II: Commentary on the Classification Problems (Quoted tables.pdf in DVD.1) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه گروه های ساده محدود II: تفسیری بر مسائل طبقه بندی (جدول نقل شده.pdf در DVD.1) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این یک توضیح منسجم برای وجود 26 گروه ساده پراکنده شناخته شده است که در اصل از بسیاری از زمینه های نامرتبط ناشی می شوند. شواهد ارائه شده مبتنی بر روابط نزدیک بین نظریه گروه عمومی، نظریه شخصیت معمولی، نظریه نمایش مدولار و جبر الگوریتمی است که در جلد اول توضیح داده شده است. نویسنده الگوریتم جدیدی را ارائه میکند که توسط آن میتوان 25 گروه ساده پراکنده را ساخت (کوچکترین گروه Mathieu M11 را میتوان به دلایل نظری حذف کرد)، و نشان میدهد که به گروههای ساده پراکنده محدود نمیشود. او همچنین ساخت و سازهای گروه های مختلف را توصیف می کند و منحصر به فرد بودن آنها را در صورت امکان ثابت می کند. اثبات وجود محاسباتی در DVD همراه مستند شده است. نویسنده همچنین چندین مسئله باز مربوط به قضیه را بیان می کند و ادعا می کند که دقیقاً 26 گروه وجود دارد و هشدار R. Brauer مبنی بر اینکه ممکن است بی نهایت زیاد باشد. برخی از این مشکلات نیاز به آزمایشات جدیدی با الگوریتم نویسنده دارد.
This is a coherent explanation for the existence of the 26 known sporadic simple groups originally arising from many unrelated contexts. The given proofs build on the close relations between general group theory, ordinary character theory, modular representation theory and algorithmic algebra described in the first volume. The author presents a new algorithm by which 25 sporadic simple groups can be constructed (the smallest Mathieu group M11 can be omitted for theoretical reasons), and demonstrates that it is not restricted to sporadic simple groups. He also describes the constructions of various groups and proves their uniqueness whenever possible. The computational existence proofs are documented in the accompanying DVD. The author also states several open problems related to the theorem asserting that there are exactly 26 groups, and R. Brauer's warning that there may be infinitely many. Some of these problems require new experiments with the author's algorithm.
GERHARD MICHLER, Theory of Finite Simple Groups II -- Commentary on the Classification Problems Contents Acknowledgements Introduction 1. Simple groups and indecomposable subgroups of GL_n(2) 1.1 Two alternative views on the classification problem 1.2 Simple groups are of infinite representation type, p = 2 1.3 The algorithm 1.4 Documentation of experimental results 1.5 Constructing projective irreducible modular representations 1.6 Thompson\'s group order formula revisited 2. Dickson group G_2(3) and related simple groups 2.1 Involution centralizers of Dickson\'s groups G_2(q), q odd 2.2 Fusion and conjugacy classes of even order 2.3 The 3-singular conjugacy classes 2.4 Janko\'s characterization of G_2(3) 2.5 Representatives of conjugacy classes 2.5.1 Conjugacy classes of W=2.5.2 Conjugacy classes of X_1= 2.5.3 Conjugacy classes of X_2= 2.5.4 Conjugacy classes of N_G(d_1) = X_3 = 2.6 Character tables of local subgroups of G_2(3) 2.6.1 Character table of N_G(3_A) \\cong N_G(3_B) 2.6.2 Character table of N_G(3_D) \\cong N_G(3_E) 2.6.3 Character table of N_G(7_A) 2.6.4 Character table of N_G(13_A) \\cong N_G(13_B) 3. Conway\'s simple group Co_3 3.1 Construction of the involution centralizer 3.2 Construction of a simple group of Co_3-type 3.3 Uniqueness proof 3.4 Representatives of conjugacy classes 3.4.1 Conjugacy classes of H= 3.4.2 Conjugacy classes of E= 3.4.3 Conjugacy classes of D= 3.4.4 Conjugacy classes of N_1 = N_G(r_1) = 3.4.5 Conjugacy classes of N_2 = N_G(r_2) = 3.4.6 Conjugacy classes of N_3 = N_G(r_3) = 3.4.7 Conjugacy classes of N_5 = N_G(f_1) =3.4.8 Conjugacy classes of N_6 = N_G(f_2) = 3.5 Character tables of local subgroups 3.5.1 Character table of E= 3.5.2 Character table of D= 3.5.3 Character table of H= 3.5.4 Character table of U=C_G(u) \\cong \\times Q 3.5.5 Character table of N_1 = N_G(r_1) = 3.5.6 Character table of N_2 = N_G(r_2) = 3.5.7 Character table of N_3 = N_G(r_3) = 3.5.8 Character table of N_5 = N_G(f_1) =
3.5.9 Character table of N_6 = N_G(f_2) = 4. Conway\'s simple group Co_2 4.1 Extensions of the Mathieu group M_{22} and Aut(M_{22}) 4.2 Construction of the 2-central involution centralizer 4.3 Construction of Conway\'s simple group Co_2 4.4 On the uniqueness of Co_2 4.5 Representatives of conjugacy classes 4.5.1 Conjugacy classes of H(Co_2) = 4.5.2 Conjugacy classes of D(Co_2) = 4.5.3 Conjugacy classes of E(Co_2) = 4.6 Character tables of local subgroups of Co_2 4.6.1 Character table of E_3 = E(Co_2) = 4.6.2 Character table of H(Co_2) = 5. Fischer\'s simple group Fi_{22} 5.1 Construction of the 2-central involution centralizers 5.2 Construction of Fischer\'s simple group Fi_{22} 5.3 Sketch of a uniqueness proof 5.4 The remaining cases E_1, E_4 and E_5 5.5 Representatives of conjugacy classes 5.5.1 Conjugacy classes of H(Fi_{22}) = 5.5.2 Conjugacy classes of D(Fi_{22}) = 5.5.3 Conjugacy classes of E(Fi_{22}) = 5.6 Character tables of local subgroups of Fi_{22} 5.6.1 Character table of E_2 = E(Fi_{22}) = 5.6.2 Character table of H(Fi_{22}) = 6. Fischer\'s simple group Fi_{23} 6.1 Extensions of the Mathieu group M_{23} 6.2 Construction of a 2-central involution centralizer 6.3 Construction of Fischer\'s simple group Fi_{23} 6.4 On the uniqueness of Fi_{23} 6.5 Representatives of conjugacy classes 6.5.1 Conjugacy classes of E(Fi_{23}) = 6.5.2 Conjugacy classes of H(Fi_{23}) = 6.5.3 Conjugacy classes of D(Fi_{23}) = 6.5.4 Conjugacy classes of Fi_{23} = 6.6 Character tables of local subgroups of Fi_{23} 6.6.1 Character table of E = E(Fi_{23}) = 6.6.2 Character table of D(Fi_{23}) = 6.6.3 Character table of H(Fi_{23}) = 7. Conway\'s simple group Co_1 7.1 Extensions of the Mathieu group M_{24} 7.2 Construction of the 2-central involution centralizer of Co_1 7.3 Construction of Conway\'s simple group Co_1 7.4 On the uniqueness of Co_1 7.5 Representatives of conjugacy classes 7.5.1 Conjugacy classes of E(Co_1) = 7.5.2 Conjugacy classes of H(Co_1) = 7.6 Character tables of local subgroups of Co_1 7.6.1 Character table of E(Co_1) = 7.6.2 Character table of H(Co_1) = 8. Janko\'s group J_4 8.1 Structure of the given centralizer 8.2 Conjugacy classes and group order 8.3 Existence and uniqueness proofs 8.4 Other constructions in GL_{1333}(11) and GL_{112}(2) 8.5 Representatives of conjugacy classes 8.5.1 Conjugacy classes of H = C_G(z) = 8.5.2 Conjugacy classes of E = N_G(A) = 8.6 Character tables of local subgroups 8.6.1 Character table of H(J_4) = 8.6.2 Character table of E = N_G(A) = 9. Fischer\'s simple group Fi\'_{24} 9.1 The 2-fold cover of the automorphism group Aut(Fi_{22}) 9.2 A semi-simple representation of Fi_{23} in GL_{8671}(13) 9.3 Construction of the irreducible subgroup G of GL_{8671}(13) 9.4 G is isomorphic to Fischer\'s simple group Fi\'_{24} 9.5 Presentation of 2-central involution centralizer 9.6 On the uniqueness of Fi\'_{24} 9.7 Representatives of conjugacy classes 9.7.1 Conjugacy classes of A_1 = 2Aut(Fi_{22}) = 9.7.2 Conjugacy classes of E(Fi_{24}) =9.7.3 Conjugacy classes of H(Fi\'_{24}) = 9.8 Character tables of local subgroups 9.8.1 Character table of A_1 = 2Aut(Fi_{22}) = 9.8.2 Character table of H(Fi\'_{24}) =9.8.3 Character table of E(Fi\'_{24}) = 10. Tits\' group ^2F_4(2)\' 10.1 Construction of the 2-central involution centralizer 10.2 Fusion 10.3 Existence proof of Tits\' simple group inside GL_{26}(73) 10.4 Group order 10.5 The 3-, 5- and 13-singular conjugacy classes 10.6 Uniqueness proof 10.7 Representatives of conjugacy classes 10.7.1 Conjugacy classes of H = 10.7.2 Conjugacy classes of N_G(S_5) = 10.7.3 Conjugacy classes of D = 10.7.4 Conjugacy classes of E = 10.7.5 Conjugacy classes of U = 10.7.6 Conjugacy classes of N_3 = 10.7.7 Conjugacy classes of N_5 = 10.8 Character tables of local subgroups 10.8.1 Character table of H = C_G(z) 10.8.2 Character table of D = N_H(A) 10.8.3 Character table of E = N_G(A) 10.8.4 Character table of U = C_G(u) 10.8.5 Character table of N_3 10.8.6 Character table of N_5 10.8.7 Character table of NS_5 = N_G(S_5) 11. McLaughlin\'s group McL 11.1 Construction of the 2-central involution centralizer 11.2 Structure of the given centralizer H = 2A_8 11.3 Existence and uniqueness proof 11.4 Representatives of conjugacy classes 11.4.1 Conjugacy classes of E = 11.4.2 Conjugacy classes of H = 11.4.3 Conjugacy classes of D = 11.4.4 Conjugacy classes of G = 11.5 Character tables of local subgroups 11.5.1 Character table of E = 11.5.2 Character table of D = 11.5.3 Character table of H = 12. Rudvalis\' group Ru 12.1 Construction of the 2-central involution centralizer 12.2 Construction of a simple group of Ru-type 12.3 Fusion 12.4 Uniqueness proof 12.5 Representatives of conjugacy classes 12.5.1 Conjugacy classes of H = 12.5.2 Conjugacy classes of D = 12.5.3 Conjugacy classes of E = 12.5.4 Conjugacy classes of M = 12.5.5 Conjugacy classes of G = 12.6 Character tables of local subgroups 12.6.1 Character table of H = 12.6.2 Character table of E= 12.6.3 Character table of D= 12.6.4 Character table of N_G(3_A) \\cong 3Aut(A_6) 12.6.5 Character table of M = N_G(R) = (d_1i, d_2) 12.6.6 Character table of N_G(5_A) \\cong 5^{1+2} : (Q_8 \\times 4) 12.6.7 Character table of N_G(5_B) \\cong 5 : 4 \\times A_5 12.6.8 Character table of G= 13. Lyons\' group Ly 13.1 Structure of the given centralizer 13.2 Conjugacy classes of elements of even order 13.3 Conjugacy classes of p-singular elements 13.4 Group order 13.5 Existence and uniqueness proofs 13.6 Representatives of conjugacy classes 13.6.1 Conjugacy classes of H = 13.6.2 Conjugacy classes of D = N_H(A) = 13.6.3 Conjugacy classes of N = N_G (A)= 13.6.4 Conjugacy classes of E = N_G(3_A) = \\cong 3McL : 2 13,6.5 Conjugacy classes of R = N_G(f) = 13.6.6 Conjugacy classes of L = N_R(V) = 13.6. 7 Conjugacy classes of M = N_G(V) = 13.7 Character tables of local subgroups 13.7.1 Character table of H = \\cong 2A_{11} 13.7.2 Character table of D = 13.7.3 Character table of N = 13.7.4 Character table of E = N_G(3_A) \\cong 3McL : 2 13.7.5 Character table of R = N_G(f) \\cong 5^{1+4} : 4S_6 13.7.6 Character table of M = N_G(V) \\cong 5^3.L_3(5) 13.7.7 Character table of L = N_R(V) \\cong 5^3. (5^2 : GL_2(5)) 14. Suzuki\'s group Suz 14.1 The centralizer of a 2-central involution 14.2 Even conjugacy classes and group order 14.3 Existence proof of Suz inside GL_{143}(13) 14.4 Uniqueness proof 14.5 Representatives of conjugacy classes 14.5.1 Conjugacy classes of H = 14.5.2 Conjugacy classes of E = N_G(A) = 14.5.3 Conjugacy classes of D = 14.5.4 Conjugacy classes of W = 14.5.5 Conjugacy classes of M = N_G(V) = 14.5.6 Conjugacy classes of C_G(u) = 14.5.8 Conjugacy classes of N_2 = N_G(Z) = 14.6 Character tables of local subgroups 14.6.1 Character table of H = 14.6.2 Character table of E = N_G(A) = 14.6.3 Character table of D = N_H(A) = 14.6.4 Character table of U = C_G(u) = 14.6.6 Character table of N_2 = N_G(Z) = 15. O\'Nan\'s group ON 15.1 The centralizer of a 2-central involution 15.2 Fusion 15.3 3-singular classes 15.4 Embedding Janko\'s group J_1 into ON-type groups 15.5 Existence and uniqueness proof 15.6 Local subgroups, fusion and character table 15.7 Representatives of conjugacy classes 15.7.1 Conjugacy classes of H = C_G(z) = 15.7.2 Conjugacy classes of D = N_H(A) = 15.7.3 Conjugacy classes of E = N_G(A) = 15.7.4 Conjugacy classes of N = N_G(3_A) = N_G(r) = 15.7.5 Conjugacy classes of Y = N_G(5_A) = 15.7.6 Conjugacy classes of N_G(7_A) \\cong R = 15.7.7 Conjugacy classes of Janko subgroup J = 15.7.8 Conjugacy classes of ON \\cong G = 15.8 Character tables of local subgroups 15.8.1 Character table of H = C_G(z) 15.8.2 Character table of D = N_H(A) 15.8.3 Character table of E = N_G(A) 15.8.4 Character table of N_1 = N_G(r) 15.8.5 Character table of Y = N_G(f) = N_G(5A) 15.8.6 Character table of R = N_G(7A) 16. Concluding remarks and open problems 16.1 On the monster and the baby monster 16.2 Uniqueness problems 16.3 Is there a 27th sporadic simple group? 16.4 Is there a general classification scheme? Appendix: Table of contents of the accompanying DVD A.1 Folder DVD.1: Pdf files of quoted tables A.2 Folder DVD.2: MAGMA files of generating matrices and permutations References [1]-[16] [17]-[40] [41]-[65] [66]-[86] [87]-[107] [108]-[130] [131]-[141] Index vol.2 DVD -- DVD.1: Theory of Finite Simple Groups II_ Folder: Pdf files of quoted tables -- Gerhard O. Michler Contents 1. DVD.1.1 Conway\'s simple group Co_3 1.1 Conjugacy classes of G = \\cong Co_3 1.2 Character table of G = \\cong Co_3 2. DVD.1.2: Conway\'s simple group Co_2 2.1 Conjugacy classes of G_3 = \\cong Co_2 2.2 Character table of D(Co_2) = 3. DVD.1.3 Fischer\'s simple group Fi_{22} 3.1 Conjugacy classes of G_2 = \\cong Fi_{22} 3.2 Character table of D(Fi_{22}) = 4. DVD.1.4 Fischer\'s simple group Fi_{23} 4.1 Conjugacy classes of H_2 = H(2Fi_{22}) = 4.2 Conjugacy classes of D_2 = D(2Fi_{22}) =
4.3 Character table of D_2 = D(2Fi_{22}) =
4.4 Character table of H(2Fi_{22}) = 5. DVD.1.5 Conway\'s simple group Co_1 5.1 Conjugacy classes of D(Co_1) = 5.2 Conjugacy classes of H_1(Co_1) = 5.3 Conjugacy classes of U(Co_1) = 5.4 Conjugacy classes of C_{Co_1}(2b) 5.5 Conjugacy classes of C_{Co_1}(2c) = 5.6 Character table of D_{Co_1} = 5.7 Character table of H_1(Co_1) = 5.8 Character table of U(Co_1) = 5.9 Character table of C_{Co_1}(2b) 5.10 Character table of C_{Co_1}(2c) 6. DVD.1.6 Janko\'s simple group J_4 6.1 Conjugacy classes of D(J_4) = 6.2 Conjugacy classes of C_{J_4}(2b) 6.3 Character table of D = D(J_4) = 6.4 Character table of C_{J_4}(2b) 7. DVD.1.7 Fischer\'s simple group Fi\'_{24} 7.1 Conjugacy classes of D(Fi\'_{24}) = 7.2 Character table of mH = 7.3 Character table of mE = 7.4 Character table of D(Fi\'_{24}) =