ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Theory of cryptography : 19th International Conference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Proceedings

دانلود کتاب نظریه رمزنگاری: نوزدهمین کنفرانس بین المللی، TCC 2021، رالی، NC، ایالات متحده، 8-11 نوامبر 2021، مجموعه مقالات

Theory of cryptography : 19th International Conference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Proceedings

مشخصات کتاب

Theory of cryptography : 19th International Conference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Proceedings

ویرایش: [Part I] 
نویسندگان: ,   
سری: Lecture Notes in Computer Science, 13042 
ISBN (شابک) : 9783030904593, 3030904598 
ناشر: Springer 
سال نشر: 2021 
تعداد صفحات: [799] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 15 Mb 

قیمت کتاب (تومان) : 45,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Theory of cryptography : 19th International Conference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Proceedings به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نظریه رمزنگاری: نوزدهمین کنفرانس بین المللی، TCC 2021، رالی، NC، ایالات متحده، 8-11 نوامبر 2021، مجموعه مقالات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب نظریه رمزنگاری: نوزدهمین کنفرانس بین المللی، TCC 2021، رالی، NC، ایالات متحده، 8-11 نوامبر 2021، مجموعه مقالات

مجموعه سه جلدی LNCS 13042، LNCS 13043 و LNCS 13044 مجموعه مقالات داوری نوزدهمین کنفرانس بین المللی تئوری رمزنگاری، TCC 2021، برگزار شده در رالی، NC، ایالات متحده، در نوامبر 2021 را تشکیل می دهد. مجموع مقالات ارائه شده در 66 مورد این مجموعه سه جلدی با دقت بررسی و از بین 161 مورد ارسالی انتخاب شد. آنها موضوعات سیستم های اثبات، رمزگذاری مبتنی بر ویژگی و عملکردی، مبهم سازی، مدیریت کلید و ارتباطات ایمن را پوشش می دهند.


توضیحاتی درمورد کتاب به خارجی

The three-volume set LNCS 13042, LNCS 13043 and LNCS 13044 constitutes the refereed proceedings of the 19th International Conference on Theory of Cryptography, TCC 2021, held in Raleigh, NC, USA, in November 2021. The total of 66 full papers presented in this three-volume set was carefully reviewed and selected from 161 submissions. They cover topics on proof systems, attribute-based and functional encryption, obfuscation, key management and secure communication.



فهرست مطالب

Preface
Organization
Contents – Part I
Contents – Part II
Contents – Part III
Secure Quantum Computation with Classical Communication
	1 Introduction
		1.1 Results
		1.2 Technical Overview
		1.3 Discussion and Open Problems
		1.4 Other Related Work
	2 Preliminaries
		2.1 Delegation of Quantum Computation
		2.2 Quantum Fully-Homomorphic Encryption
		2.3 Multi-party Quantum Computation
		2.4 Classical Non-interactive Secure Computation
	3 Generalizing the Alagic et al. Parallel Repetition Theorem
	4 Composable Blind CVQC
		4.1 CVQC for Quantum-Classical Circuits
		4.2 Delegation of Quantum-Classical Circuits with Quantum Verifier
		4.3 Making the Verifier Classical
		4.4 Four-Message CVQC
	5 Secure Quantum Computation
		5.1 A Generic Construction of Multi-party Quantum Computation
	References
Secure Software Leasing from Standard Assumptions
	1 Introduction
		1.1 Background
		1.2 Our Results
		1.3 Related Work
		1.4 Concurrent Work
		1.5 Technical Overview
		1.6 Organization
	2 Preliminaries
		2.1 Noisy Trapdoor Claw-Free Hash Function
		2.2 Secure Software Leasing
	3 Two-Tier Quantum Lightning
		3.1 Two-Tier Quantum Lightning
		3.2 Two-Tier Quantum Lightning with Classical Verification
		3.3 Two-Tier Quantum Lightning with Classical Verification from LWE
	4 Relaxed Watermarking
		4.1 Definition of Relaxed Watermarking
		4.2 Relaxed Watermarking for PRF
	5 Secure Software Leasing from Two-Tier Quantum Lightning
	References
Post-quantum Resettably-Sound Zero Knowledge
	1 Introduction
		1.1 Contributions
	2 Technical Overview
		2.1 Defining Post-quantum Resettable Soundness
		2.2 3-Message and Constant-Round-Public-Coin Protocols Can Be Made Resettably Sound
		2.3 Constructing a Resettably Sound Non-Black-Box Zero-Knowledge Protocol
		2.4 From Resettable Soundness to Quantum Unobfuscatability
		2.5 Related Work
	3 Defining Post-Quantum Resettable Soundness
		3.1 Post-Quantum Resettable Soundness
	4 Transforming Protocols to Achieve Quantum Resettable Soundness
		4.1 Quantum Oracle Notations
		4.2 Transforming 3 Message Private Coin Protocols
		4.3 Deterministic-Prefix Resetting Provers
	5 A Post-Quantum Resettably Sound Zero Knowledge Protocol
		5.1 Protocol Construction
	References
Secure Software Leasing Without Assumptions
	1 Introduction
		1.1 Summary of Contributions
		1.2 Open Problems
		1.3 Outline
	2 Preliminaries
		2.1 Notation
		2.2 Quantum Authentication
	3 Definitions
		3.1 Quantum Copy Protection
		3.2 Secure Software Leasing
		3.3 Distributions for Point Functions
	4 Generic Results on Definitions
		4.1 Reusability of the Program
		4.2 Malicious-Malicious Security and Correctness
		4.3 Secure Software Leasing and Honest-Malicious Copy Protection
		4.4 Secure Software Leasing of Compute-and-Compare Circuits
	5 Authentication-Based Copy Protection Scheme
		5.1 Construction and Correctness
		5.2 Honest-Malicious Security
	References
The Round Complexity of Quantum Zero-Knowledge
	1 Introduction
	2 Technical Overview
		2.1 Witness-Indistinguishable Arguments
		2.2 Zero Knowledge Arguments
		2.3 Zero Knowledge in the Timing Model
		2.4 Related Work
	3 Preliminaries
		3.1 Quantum Adversaries
		3.2 Learning with Errors
		3.3 Pseudorandom Functions
		3.4 Interactive Proofs and Sigma Protocols
		3.5 Statistical ZAPs for NP
		3.6 Sometimes-Binding Statistically Hiding Commitments
		3.7 Quantum One-Time Pad
		3.8 Homomorphic Encryption
	4 Witness-Indistinguishable Arguments for QMA
		4.1 Definition
		4.2 Statistically Zero-Knowledge Sigma Protocol
		4.3 2-Round Witness-Indistinguishable Arguments for QMA
	References
Rate-1 Quantum Fully Homomorphic Encryption
	1 Introduction
		1.1 Our Results
		1.2 Related Work
	2 Technical Overview
		2.1 Malicious Circuit Privacy
		2.2 Rate-1 Quantum Fully-Homomorphic Encryption
		2.3 Putting Things Together
	3 Preliminaries
		3.1 Quantum Adversaries
		3.2 Learning with Errors
		3.3 Pauli Operators
		3.4 Quantum One-Time Pad
	4 Homomorphic Encryption
		4.1 Classical Homomorphic Encryption
		4.2 Quantum Homomorphic Encryption
	5 Malicious Circuit Privacy for Quantum Computation
		5.1 Semi-Honest Circuit Privacy
		5.2 Our Bootstrapping Theorem
	6 Rate-1 Quantum Fully Homomorphic Encryption
		6.1 Definition
		6.2 Our Construction
	References
Unifying Presampling via Concentration Bounds
	1 Introduction
		1.1 Our Results
		1.2 Open Problems
	2 Preliminaries
		2.1 Quantum Random Oracle Model
		2.2 Compressed Oracle
		2.3 Security Game with Classical Advice
		2.4 Presampling Techniques for Random Oracles
		2.5 Aaronson-Ambainis Conjecture
		2.6 Concentration Bounds
	3 Barriers for Leveraging Presampling Techniques
	4 Unifying Presampling via Concentration Bounds
		4.1 A New Characterization of Bit-Fixing
		4.2 A Simpler Proof for Theorem 3
	5 Applications to AI-QROM
		5.1 Presampling Techniques for Quantum Random Oracles
		5.2 Post-quantum Non-uniform Security of Merkle-Damg̊ard Hash Functions (MDHF)
		5.3 Post-quantum Non-uniform Security of One-Way Functions (OWF)
	References
Quantum Key-Length Extension
	1 Introduction
		1.1 The FX Construction
		1.2 Double Encryption
		1.3 Overview
	2 Preliminaries
		2.1 Quantum Background
	3 The FX Construction
		3.1 Security of FX Against Non-adaptive Attacks
		3.2 Adaptive Security of FFX
	4 Double Encryption
		4.1 Security Result
		4.2 The Hardness of List Disjointness
	References
Relationships Between Quantum IND-CPA Notions
	1 Introduction
		1.1 Previous Works
		1.2 Our Contribution
		1.3 Organization of the Paper
	2 Preliminaries
	3 Definitions
		3.1 Syntax of l - The Learning Queries
		3.2 Syntax of c - The Challenge Queries
		3.3 Instantiation of Learning and Challenge Query Models
	4 Decoherence Lemmas
	5 Impossible Security Notions
	6 Implications
	7 Separations
		7.1 Separations by Quasi-Length-Preserving Encryptions
		7.2 Separations by Simon's Algorithm
		7.3 Separations by Shi's SetEquality Problem
		7.4 Separations by Other Arguments
	8 Encryption Secure in All Notions
	References
Classical Binding for Quantum Commitments
	1 Introduction
		1.1 Overview of Our Results and Techniques
		1.2 Related Work
	2 Preliminaries and Basic Tools
		2.1 Quantum Formalism
		2.2 Standard Tools
	3 Classically Binding Quantum Commitments
		3.1 Composition and Application
	4 Construction
		4.1 Split Classical Binding
		4.2 Split Binding Amplification
		4.3 SCBQC from Any One-Way Function
	5 Classical Binding Is Impossible with Statistical Hiding
	References
Unclonable Encryption, Revisited
	1 Introduction
		1.1 Our Work
		1.2 Technical Overview
		1.3 Structure of This Paper
	2 Preliminaries
		2.1 Notation
		2.2 Quantum Computing
		2.3 Post-Quantum Digital Signatures
		2.4 Functional Encryption
		2.5 Quantum Copy-Protection
		2.6 Copy-Protection of Point Functions
	3 Private-Key and Public-Key Unclonable Encryption: Definition
		3.1 Unclonable Encryption
		3.2 Private-Key and Public-Key Unclonable Encryption
	4 Private-Key Unclonable Encryption (PK-UE)
		4.1 Private-Key Encryption with Fake-Key Property
		4.2 Construction
	5 Public-Key Unclonable Encryption
		5.1 Construction
	6 Additional Results on Unclonable Encryption
		6.1 Generalized Conjugate Encryption
		6.2 A Lower Bound for Conjugate Encryption
	7 Construction of Copy-Protection from Unclonable Encryption
	References
Somewhere Statistical Soundness, Post-Quantum Security, and SNARGs
	1 Introduction
		1.1 Multi-extractable Somewhere Statistically Binding (meSSB) Hash Families
		1.2 Somewhere Statistically Sound (SSS) Interactive Arguments
		1.3 SNARGs: From BatchNP to ¶ and Beyond
	2 Preliminaries
		2.1 Straight-Line Reductions
		2.2 Probabilistically Checkable Proofs (PCP)
		2.3 Hash Function Families with Local Opening
		2.4 Kilian's Protocol
		2.5 The BMW Heuristic
	3 Somewhere Statistically Binding Hash Functions
		3.1 Extractable Somewhere Statistically Binding (eSSB) Hash Functions
		3.2 Multi-Extractable SSB (meSSB) Hash Functions
		3.3 The BMW Protocol with meSSB Hash Families
	4 Somewhere Statistically Sound Interactive Arguments
		4.1 Defining SSS Arguments
		4.2 SSS Implies Straight-Line Soundness
		4.3 SSS Implies Post-Quantum Soundness
	5 Kilian's Protocol Is Somewhere Statistically Sound
	6 SNARG for Languages with Non-Signaling PCPs
		6.1 BatchNP
		6.2 SNARG for Languages with a Non-Signaling PCP
	A  Proof of Theorem7
	References
Black-Box Impossibilities of Obtaining 2-Round Weak ZK and Strong WI from Polynomial Hardness
	1 Introduction
		1.1 Our Results
	2 Our Techniques
		2.1 BB Impossibility of 2-Round Delayed-Input Weak ZK
		2.2 BB Impossibility of 2-Round Strong WI
	3 Preliminaries
		3.1 (, )-Approximation
		3.2 2-Round Interactive Argument
		3.3 Falsifiable Assumption and Black-Box Reduction
		3.4 Puncturable (CCA-Secure) Public-Key Encryption
	4 From 2-Round Delayed-Input Strong WI to 2-Round Special-Purpose Weak ZK
	5 From Special-Purpose Weak ZK to Special-Purpose Pre-Processing ZK
	6 BB Impossibility of 2-Round Special-Purpose Pre-Processing ZK
	7 Obtaining Main Results
	References
Tight Security Bounds for Micali's SNARGs
	1 Introduction
		1.1 Our Contributions
		1.2 Concrete Improvements in Argument Size
		1.3 Related Work
	2 Techniques
		2.1 Prior Analysis of the Micali Construction
		2.2 The Prior Analysis Is Not Tight
		2.3 A Tree Soundness Game
		2.4 PCPs Are Secure Against Collisions and Inversions
		2.5 Scoring Oracle Queries
		2.6 Concluding the Proof of Theorem 1
	3 Definitions
		3.1 Probabilistically Checkable Proofs
		3.2 Non-interactive Arguments in the Random Oracle Model
		3.3 Micali's Construction
	4 Reverse Soundness for a PCP
	5 Tree Soundness for a PCP
	6 Upper Bound on the Soundness Error of Micali
		6.1 Proof of Theorem 5
	References
Acyclicity Programming for Sigma-Protocols
	1 Introduction
		1.1 Sigma-Protocol Composition
		1.2 Our Contributions
		1.3 Technical Overview
		1.4 Potential Applications
	2 Preliminaries
		2.1 Sigma-protocols
		2.2 Non-interactive Arguments
		2.3 Graphs
	3 ACP Composition
		3.1 Construction
		3.2 Security
		3.3 Security in the Non-programmable Random Oracle Model
	4 The Expressive Power of Acylicity Programs
		4.1 Polynomial Equivalence with Branching Programs
		4.2 Acyclicity Programs for Monotone Formulas
	5 Composition for Predicates Represented by Circuits
		5.1 Restrictive sampling from the Discrete Logarithm Assumption
		5.2 Security in the Non-programmable Random Oracle Model
	6 Concluding Remarks
	References
Statistical ZAPs from Group-Based Assumptions
	1 Introduction
		1.1 Our Result
		1.2 Our Techniques
		1.3 A Direct Construction Using Pairings
	2 Preliminaries
		2.1 Hardness Assumptions
		2.2 ZAP
		2.3 NIZKs in the Hidden-Bits Model
		2.4 Correlation-Intractable Hash Functions
	3 Interactive Hidden-Bits Generating Protocol and ZAPs for NP
		3.1 Definition
		3.2 ZAPs for NP from Interactive Hidden-Bits Generating Protocols
		3.3 Security
	4 The LPWW Language LLPWW
		4.1 Definition
		4.2 IHBG-Friendly Statistical ZAPs for the LPWW Language LLPWW
		4.3 -protocols for the LPWW Language LLPWW
	5 Interactive Hidden-Bits Generating Protocols from the Explicit Hardness of DDH and an IHBG-Friendly Statistical ZAPs for LLPWW
		5.1 Constructing the IHBG Protocol
		5.2 Security
	6 IHBG-Friendly Statistical ZAPs for LLPWW
		6.1 First Construction: A Statistical ZAP for LLPWW in Pairing Groups
		6.2 Second Construction: A Statistical ZAP for LLPWW in Pairing-Free Groups
	References
Generalized Proofs of Knowledge with Fully Dynamic Setup
	1 Introduction
		1.1 Our Contributions
		1.2 Extended Overview of Results
	2 Agree-and-Prove: Definition
		2.1 The Scenario
		2.2 The Protocols
		2.3 The Basic Security Notion
		2.4 Zero Knowledge
		2.5 On the Composability of the Notion
	3 Application to Proof-of-Ownership of Files
		3.1 Proof-of-Ownership with a Local RO
		3.2 Proof-of-Ownership with a Global RO
		3.3 On Including Privacy and Zero-Knowledge
	4 Application to Client Authentication
	References
Fully-Succinct Publicly Verifiable Delegation from Constant-Size Assumptions
	1 Introduction
		1.1 Our Results
	2 Technical Overview
		2.1 No-Signaling Somewhere Statistically Binding Commitments/Hashing
		2.2 Pairing-Based Quasi-Arguments
		2.3 From Our Quasi-Arguments to Delegation
		2.4 NIZK, SNARKs and Compact NIZK
	References
On Expected Polynomial Runtime in Cryptography
	1 Introduction
		1.1 Obstacles
		1.2 Motivation: Reproving Zero-Knowledge of Graph 3-Colouring
		1.3 Contribution
		1.4 Technical Overview and Results
		1.5 Related Work
		1.6 Separations
		1.7 Structure of the Paper
	2 Preliminaries
	3 Computationally Expected Polynomial Time
	4 Application to Zero-Knowledge Arguments
		4.1 Zero-Knowledge
		4.2 Application to Graph 3-Colouring
	5 Hybrid Argument and Sequential Composition
		5.1 Hybrid Lemma
		5.2 Sequential Zero-Knowledge
	References
Information-Theoretically Secure MPC Against Mixed Dynamic Adversaries
	1 Introduction
		1.1 Our Contribution
		1.2 On Modeling of Fail-Stop Corruptions
		1.3 Technical Overview
		1.4 Related Work
		1.5 Overview of the Document
	2 Preliminaries
		2.1 Notation
		2.2 Security Model
		2.3 Definitions
	3 Impossibility Results for Statistical Security
		3.1 Secure Function Evaluation
		3.2 Reactive MPC
	4 Impossibility Results for Perfect Security
		4.1 Secure Function Evaluation
		4.2 Reactive MPC
	5 Positive Results
		5.1 SFE with Statistical Security
		5.2 Fair VSS with Statistical Security
		5.3 Fair VSS with Perfect Security
	References
Round-Efficient Byzantine Agreement and Multi-party Computation with Asynchronous Fallback
	1 Introduction
		1.1 Motivation
		1.2 Contributions
		1.3 Related Work
	2 Model
		2.1 Communication and Adversarial Models
		2.2 Cryptographic Primitives
	3 Definitions
		3.1 Agreement Primitives
		3.2 Broadcast Primitives
		3.3 Multi-party Computation
	4 Round-Efficient Byzantine Agreement with Asynchronous Weak Validity
		4.1 Weak Consensus with Asynchronous Weak Validity
		4.2 Fixed-Round Synchronous BA with Asynchronous Weak Validity
		4.3 Optimality of Synchronous BA with Asynchronous Weak Validity
	5 Synchronous BA with Asynchronous Fallback
	6 Round-Efficient MPC with Asynchronous Fallback
		6.1 Multi-party Garbled Circuits
		6.2 MPC with Linear Round Complexity in d and  and Asynchronous Fallback
		6.3 Protocol Description
	A Additional Definitions
	B Gradecast with Asynchronous Weak Validity
	C Proof of Lemma 1
	D A Simpler Weak-Consensus with Asynchronous Weak Validity for ta + 2ts




نظرات کاربران