دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [Third ed.]
نویسندگان: Reza N. Jazar
سری:
ISBN (شابک) : 9783030932206, 3030932206
ناشر:
سال نشر: 2022
تعداد صفحات: [836]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 18 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Theory of applied robotics : kinematics, dynamics, and control به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه رباتیک کاربردی: سینماتیک، دینامیک و کنترل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface to the Third Edition Organization of the Book Method of Presentation Level of the Book Prerequisites Unit System Symbols Preface to the Second Edition Preface to the First Edition Level of the Book Organization of the Book Method of Presentation How to Use This Book Contents About the Author 1 Introduction 1.1 Historical Development 1.2 Robot Components 1.2.1 Link 1.2.2 Joint 1.2.3 Manipulator 1.2.4 Wrist 1.2.5 End-Effector 1.2.6 Actuators 1.2.7 Sensors 1.2.8 Controller 1.3 Robot Classifications 1.3.1 Geometry 1.3.2 Workspace 1.3.3 Actuation 1.3.4 Control 1.3.5 Application 1.4 Robot's Kinematics, Dynamics, and Control 1.5 Principle of Kinematics 1.5.1 Triad 1.5.2 Unit Vectors 1.5.3 Orthogonality Condition 1.5.4 Coordinate Frame and Transformation 1.5.5 Vector Definition 1.5.6 Vector Function 1.6 Summary 1.7 Key Symbols Exercises Exercises Part I Kinematics 2 Rotation Kinematics 2.1 Rotation About Global Cartesian Axes 2.2 Successive Rotation About Global Cartesian Axes 2.3 Rotation About Local Cartesian Axes 2.4 Successive Rotation About Local Cartesian Axes 2.5 Euler Angles 2.6 Local Axes Versus Global Axes Rotation 2.7 General Transformation 2.8 Active and Passive Transformation 2.9 Summary 2.10 Key Symbols Exercises Exercises 3 Orientation Kinematics 3.1 Axis–Angle Rotation 3.2 Order-Free Rotation 3.3 Euler Parameters 3.4 Quaternions 3.5 Spinors and Rotators 3.6 Problems in Representing Rotations 3.6.1 Rotation Matrix 3.6.2 Axis–Angle 3.6.3 Euler Angles 3.6.4 Quaternion 3.6.5 Euler Parameters 3.7 Composition and Decomposition of Rotations 3.7.1 Composition of Rotations 3.7.2 Decomposition of Rotations 3.8 Summary 3.9 Key Symbols Exercises Exercises 4 Motion Kinematics 4.1 Rigid Body Motion 4.2 Homogenous Transformation 4.3 Inverse and Reverse Homogenous Transformation 4.4 Combined Homogenous Transformation 4.5 Order-Free Transformation 4.6 Screw Coordinates 4.7 Inverse Screw 4.8 Combined Screw Transformation 4.9 The Plücker Line Coordinate 4.10 The Geometry of Plane and Line 4.10.1 Moment 4.10.2 Angle and Distance 4.10.3 Plane and Line 4.11 Screw and Plücker Coordinate 4.12 Summary 4.13 Key Symbols Exercises Exercises 5 Forward Kinematics 5.1 Denavit–Hartenberg Notation 5.2 Transformation Between Adjacent Coordinate Frames 5.3 Forward Position Kinematics of Robots 5.4 Spherical Wrist 5.5 Assembling Kinematics 5.6 Coordinate Transformation Using Screws 5.7 Non-Denavit–Hartenberg Methods 5.8 Summary 5.9 Key Symbols Exercises Exercises 6 Inverse Kinematics 6.1 Decoupling Technique 6.2 Inverse Transformation Technique 6.3 Iterative Technique 6.4 Comparison of the Inverse Kinematics Techniques 6.4.1 Existence and Uniqueness of Solution 6.4.2 Inverse Kinematics Techniques 6.5 Singular Configuration 6.6 Summary 6.7 Key Symbols Exercises Exercises Part II Derivative Kinematics 7 Angular Velocity 7.1 Angular Velocity Vector and Matrix 7.2 Time Derivative and Coordinate Frames 7.3 Rigid Body Velocity 7.4 Velocity Transformation Matrix 7.5 Derivative of a Homogenous Transformation Matrix 7.6 Summary 7.7 Key Symbols Exercises Exercises 8 Velocity Kinematics 8.1 Rigid Link Velocity 8.2 Forward Velocity Kinematics 8.3 Jacobian Generating Vectors 8.4 Inverse Velocity Kinematics 8.5 Linear Algebraic Equations 8.6 Matrix Inversion 8.7 Nonlinear Algebraic Equations 8.8 Jacobian Matrix From Link Transformation Matrices 8.9 Summary 8.10 Key Symbols Exercises Exercises 9 Acceleration Kinematics 9.1 Angular Acceleration Vector and Matrix 9.2 Rigid Body Acceleration 9.3 Acceleration Transformation Matrix 9.4 Forward Acceleration Kinematics 9.5 Inverse Acceleration Kinematics 9.6 Rigid Link Recursive Acceleration 9.7 Second Derivative and Coordinate Frames 9.8 Summary 9.9 Key Symbols Exercises Exercises Part III Dynamics 10 Applied Dynamics 10.1 Force and Moment 10.1.1 Force and Moment 10.1.2 Momentum 10.1.3 Equation of Motion 10.1.4 Work and Energy 10.2 Rigid Body Translational Kinetics 10.3 Rigid Body Rotational Kinetics 10.4 Mass Moment Matrix 10.5 Lagrange's Form of Newton's Equations 10.6 Lagrangian Mechanics 10.7 Summary 10.8 Key Symbols Exercises Exercises 11 Robot Dynamics 11.1 Rigid Link Newton–Euler Dynamics 11.2 Recursive Newton–Euler Dynamics 11.3 Robot Lagrange Dynamics 11.4 Lagrange Equations and Link Transformation Matrices 11.5 Robot Statics 11.6 Summary 11.7 Key Symbols Exercises Exercises Part IV Control 12 Path Planning 12.1 Cubic Path 12.2 Polynomial Path 12.3 Non-polynomial Path Planning 12.4 Spatial Path Design 12.5 Forward Path Robot Motion 12.6 Inverse Path Robot Motion 12.7 Rotational Path 12.8 Summary 12.9 Key Symbols Exercises Exercises 13 Time Optimal Control 13.1 Minimum Time and Bang-Bang Control 13.2 Floating Time Method 13.3 Time Optimal Control for Robots 13.4 Summary 13.5 Key Symbols Exercises Exercises 14 Control Techniques 14.1 Open- and Closed-Loop Control 14.2 Computed Torque Control 14.3 Linear Control Technique 14.3.1 Proportional Control 14.3.2 Integral Control 14.3.3 Derivative Control 14.4 Sensing and Control 14.4.1 Position Sensors 14.4.2 Speed Sensors 14.4.3 Acceleration Sensors 14.5 Summary 14.6 Key Symbols Exercises Exercises A Global Frame Triple Rotation B Local Frame Triple Rotation C Principal Central Screws Triple Combination D Industrial Link DH Matrices E Matrix Calculus F Trigonometric Formula G Algebraic Formula H Unit Conversions Bibliography Front Matter Chapter 1: Introduction Chapter 2: Rotation Kinematics Chapter 3: Orientation Kinematics Chapter 4: Motion Kinematics Chapter 5: Forward Kinematics Chapter 6: Inverse Kinematics Chapter 7: Angular Velocity Chapter 8: Velocity Kinematics Chapter 9: Acceleration Kinematics Chapter 10: Applied Dynamics Chapter 11: Robot Dynamics Chapter 12: Path Planning Chapter 13: Time Optimal Control Chapter 14: Control Techniques Index