دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات ویرایش: نویسندگان: Olga Valenzuela, Fernando Rojas, Luis Javier Herrera, Héctor Pomares, Ignacio Rojas سری: Contributions to Statistics ISBN (شابک) : 3030562182, 9783030562182 ناشر: Springer سال نشر: 2020 تعداد صفحات: 452 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Theory and Applications of Time Series Analysis: Selected Contributions from ITISE 2019 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه و برنامه های تجزیه و تحلیل سری زمانی: مشارکت های منتخب از ITISE 2019 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مجموعهای از مشارکتهای بررسیشده را در مورد آخرین پیشرفتها در تحلیل سریهای زمانی ارائه میکند، که در کنفرانس بینالمللی سریهای زمانی و پیشبینی (ITISE 2019)، که در گرانادا، اسپانیا، در 25 تا 27 سپتامبر 2019 برگزار شد، ارائه شده است. دو بخش اول کتاب مشارکت های نظری در مورد روش های آماری و ریاضی پیشرفته و مدل های اقتصادسنجی، پیش بینی مالی و تجزیه و تحلیل ریسک را ارائه می دهد. چهار بخش باقی مانده شامل مشارکت های عملی در تجزیه و تحلیل سری های زمانی در انرژی است. سری های زمانی پیچیده/کلان داده و پیش بینی؛ تجزیه و تحلیل سری های زمانی با هوش محاسباتی. و تجزیه و تحلیل سری های زمانی و پیش بینی برای سایر مشکلات دنیای واقعی. با توجه به این ترکیب از موضوعات، خوانندگان دیدگاه جامع تری در زمینه تحلیل و پیش بینی سری های زمانی به دست خواهند آورد.
مجموعه کنفرانس ITISE انجمنی را برای دانشمندان، مهندسان، مربیان و دانشجویان فراهم می کند تا در مورد آخرین پیشرفت ها بحث کنند. و پیاده سازی در مبانی، نظریه، مدل ها و کاربردهای تحلیل و پیش بینی سری های زمانی. این بر تحقیقات بین رشته ای شامل علوم کامپیوتر، ریاضیات، آمار و اقتصاد سنجی تمرکز دارد.
This book presents a selection of peer-reviewed contributions on the latest advances in time series analysis, presented at the International Conference on Time Series and Forecasting (ITISE 2019), held in Granada, Spain, on September 25-27, 2019. The first two parts of the book present theoretical contributions on statistical and advanced mathematical methods, and on econometric models, financial forecasting and risk analysis. The remaining four parts include practical contributions on time series analysis in energy; complex/big data time series and forecasting; time series analysis with computational intelligence; and time series analysis and prediction for other real-world problems. Given this mix of topics, readers will acquire a more comprehensive perspective on the field of time series analysis and forecasting.
The ITISE conference series provides a forum for scientists, engineers, educators and students to discuss the latest advances and implementations in the foundations, theory, models and applications of time series analysis and forecasting. It focuses on interdisciplinary research encompassing computer science, mathematics, statistics and econometrics.
Preface Contents Advanced Statistical and Mathematical Methods for Time Series Analysis Random Forest Variable Selection for Sparse Vector Autoregressive Models 1 Introduction 2 State of the Art 2.1 Feature Selection in Vector Autoregressive Models 2.2 Random Forest for Feature Filtering 3 Methodology and Data 3.1 Methods 3.2 Data: Urban Traffic Forecasting 4 Results 5 Discussion 6 Conclusions References Covariance Functions for Gaussian Laplacian Fields in Higher Dimension 1 Introduction 2 Frequency Domain Treatment of Stationary Fields in Higher Dimensions 2.1 Covariance Functions of Laplacian Fields 2.2 AR(p) 2.3 ARMA Fields 3 Appendix References The Correspondence Between Stochastic Linear Difference and Differential Equations 1 Introduction: The Discrete–Continuous Correspondence 2 ARMA Estimation and the Effects of Over-Rapid Sampling 3 Sinc Function Interpolation and Fourier Interpolation 4 Discrete-Time and Continuous-Time Models 5 ARMA Model and Its Continuous-Time CARMA Counterpart 6 Stochastic Differential Equations Driven by Wiener Processes 7 Summary and Conclusions References New Test for a Random Walk Detection Based on the Arcsine Law 1 Introduction 1.1 Random Walk 1.2 Ordinary Random Walk Test 1.3 Random Walk Test for an AR(1) Process 2 Efficiency Evaluation of the Proposed Test 2.1 Gaussian Random Walk 2.2 Gaussian Mixture Model 3 Power Evaluation of the Proposed Test 3.1 An AR(1) Process with the Gaussian Innovations 3.2 An AR(1) Process with the Student-T Innovations 4 Conclusions References Econometric Models and Forecasting On the Automatic Identification of Unobserved Components Models 1 Introduction 2 Unobserved Components Models 2.1 Trend Components 2.2 Seasonal Components 2.3 Irregular Components 3 State-Space Systems 4 Automatic Forecasting Algorithm for UC 5 Case Studies 5.1 Monthly Average Temperatures in Madrid at El Retiro Weather Station 5.2 Spanish Gross Domestic Product (GDP) 5.3 Demand Database 6 Conclusions References Spatial Integration of Pig Meat Markets in the EU: Complex Network Analysis of Non-linear Price Relationships 1 Introduction 2 Data and Methods 2.1 Data 2.2 Filtering 2.3 Non-linear Granger Causality Networks 2.4 Network Measures 2.5 Temporal Network Evolution 3 Finite Sample Properties of the GAM-Test 4 Empirical Analysis and Results 4.1 Network Measures of Individual Node Connectivity 4.2 Measures of Global Network Cohesiveness and Their Evolution 5 Conclusion References Comparative Study of Models for Forecasting Nigerian Stock Exchange Market Capitalization 1 Introduction 2 Literature Review 3 Methodology/Material 3.1 ARIMA Process 3.2 The ARDL Process 3.3 Test of Adequacy of Fitted Model 3.4 Performance Evaluation 4 Results 4.1 Exploratory Data Analysis 4.2 Unit Roots Test 4.3 The ARIMA Process Result 4.4 The ARDL Model Result 4.5 Performance Evaluations of the Fitted Models 5 Conclusion References Industry Specifics of Models Predicting Financial Distress 1 Introduction 2 Literature Review in the Area of the Prediction Models 3 Research Idea and Data 3.1 Paper’s Idea and Used Methods 3.2 Data Sample 4 Results 5 Conclusion References Stochastic Volatility Models Predictive Relevance for Equity Markets 1 Introduction 2 Theory and Methodology 2.1 Stochastic Volatility Models 2.2 The Unobserved State Vector Using the Nonlinear Kalman Filter 3 Stylized Facts of Volatility 3.1 Tail Probabilities, the Power Law and Extreme Values 3.2 Volatility Clustering 3.3 Volatility Exhibits Persistence 3.4 Volatility Is Mean Reverting 3.5 Volatility Asymmetry (Leverage) 3.6 Long Memory in Volatility 4 European Examples: FTSE100 Index and Equinor Asset 4.1 Equity Summaries 4.2 The Stochastic Volatility Models for the European Equities 4.3 Volatility Characteristics for the European Equities 4.4 Step Ahead Volatility Predictions for European Equities 5 Summary and Conclusions References Empirical Test of the Balassa–Samuelson Effect in Selected African Countries 1 Introduction 2 Literature Review 2.1 Introduction 2.2 The Balassa–Samuelson Model 2.3 Empirical Literature 3 Methodology 3.1 Model Specification 3.2 Data Description 3.3 Estimation Technique 4 Estimation Results 4.1 Panel Unit Root (Stationarity) Tests 4.2 Cointegration Test Results 4.3 Long-Run Coefficient 4.4 Real Exchange Rate Misalignment 5 Conclusion References Energy Time Series Forecasting End of Charge Detection by Processing Impedance Spectra of Batteries 1 Introduction 2 Data Generation 2.1 Equipment 2.2 Software 3 Data Processing 3.1 Processing of Raw Data 3.2 Processing of Spectra Data 4 Evaluation 5 Conclusion and Outlook References The Effect of Daylight Saving Time on Spanish Electrical Consumption 1 Introduction 2 DST Effects on Consumption: Simulation-Based Analysis 2.1 Procedure 2.2 Case Study 3 Randomized Block Design and Paired Data Analysis 3.1 Period of Study 3.2 Exogenous Factors Removal 3.3 Data Used in This Study 3.4 Implemented Models 3.5 Case Study 4 Conclusions References Wind Speed Forecasting Using Kernel Ridge Regression with Different Time Horizons 1 Introduction 2 Forecasting Models 2.1 Persistent Model 2.2 Least Squares Model 2.3 Kernel Ridge Regression 3 Methodology 4 Results and Discussion 4.1 One-Hour Ahead Time Horizon 4.2 Twelve-Hours Ahead Time Horizon 4.3 Day-Ahead (Twenty-Four Hours Ahead) Time Horizon 5 Conclusion References Applying a 1D-CNN Network to Electricity Load Forecasting 1 Introduction 2 Smart Meter Data 3 Importance of Time Series Forecasting 4 Convolutional Neural Networks 5 Forecasting with CNNs 6 Evalution of Different Network Structures and Training Parameters 6.1 Development and Analysis of a Basic Forecaster 6.2 Improvements to the Basic Forecaster 7 Conclusion References Long- and Short-Term Approaches for Power Consumption Prediction Using Neural Networks 1 Introduction and Problem Description 2 Data Description 2.1 Power Consumption Dataset 2.2 External Data 3 Introduction to Neural Networks 3.1 Long Short-Term Memory Neural Networks 3.2 Convolutional Neural Networks 4 Methodology 4.1 Proposed Short-Term LSTM Network 4.2 Proposed Convolutional Neural Network 4.3 Improvements over the LSTM Network for Long-Term Time Series Forecasting 5 Results 5.1 Short-Term Time Series Forecasting 5.2 Long-Term Time Series Forecasting 6 Conclusions References Forecasting Complex/Big Data Problems Freedman\'s Paradox: A Solution Based on Normalized Entropy 1 Introduction 2 Maximum Entropy Estimators and Normalized Entropy 3 Simulation Studies and Discussion 4 Conclusions and Future Research References Mining News Data for the Measurement and Prediction of Inflation Expectations 1 Introduction 2 Methodology 2.1 Data 2.2 Text Pre-processing 2.3 Topic Modelling 3 Results 4 Application in Forecasting 5 Conclusions Appendix 1: The List of Topics with Their Most Frequent Words References Big Data: Forecasting and Control for Tourism Demand 1 Introduction 2 Literature Review 2.1 Forecasting Methods Using Google Search Engines (Google Trends) 3 Methodology 3.1 Modelling and Forecasting Evaluation 4 Data 5 Empirical Results 6 Conclusions References Traffic Networks via Neural Networks: Description and Evolution 1 Traffic Networks and Their Diverse Impact 2 Neural Networks for Time Series Analysis 2.1 The Three Neural Networks Chosen 2.2 Network Design Specifics 3 Data Filtering, Training and Simulations 3.1 Images and Processing 3.2 Filtering Cascade 4 Training and Simulations 4.1 Traffic Density Forecasting 5 Traffic Signal Timings and Applications 5.1 Stochastic Markov Model 5.2 Stochastic Model to Simulate Traffic Dynamics 5.3 Traffic Signal Assignment and Heat Map References Time Series Analysis with Computational Intelligence A Comparative Study on Machine Learning Techniques for Intense Convective Rainfall Events Forecasting 1 Introduction 2 Materials and Methods 2.1 Dataset Description 2.2 Machine Learning Techniques 3 Results 4 Conclusion References Long Short-Term Memory Networks for the Prediction of Transformer Temperature for Energy Distribution Smart Grids 1 Introduction 2 Data and Methodology 2.1 Data Acquisition 2.2 Wiener-Granger Causality Analysis 2.3 Recursive Neural Networks 3 Results and Discussion 3.1 Evaluation 3.2 Candidate Variables 3.3 Prediction Results 4 Conclusions References Deep Multilayer Perceptron for Knowledge Extraction: Understanding the Gardon de Mialet Flash Floods Modeling 1 Introduction 2 Materials and Methods 2.1 Study Area: Location and General Description 2.2 Database 2.3 Artificial Neural Networks 2.4 Extracting Information: KnoX Method 3 Results 3.1 Choice of Variables 3.2 Model Selection 3.3 Discharge Estimation 3.4 Contributions of Input Variables 3.5 Results: Contributions as a Function of Time Windows 3.6 Results: Effects of the Bias 4 Discussion 4.1 Selecting a Model Type for Physical Knowledge Extraction 4.2 Response Time and Contributions 4.3 Bias Input Importance 5 Conclusions and Perspectives References Forecasting Short-Term and Medium-Term Time Series: A Comparison of Artificial Neural Networks and Fuzzy Models 1 Introduction 2 Related Works 3 Concepts of LSTM and GRU 3.1 Long Short-Term Memory 3.2 Gated Recurrent Unit 4 Fuzzy Time Series Models 4.1 Fuzzy TS Model, Based on Fuzzified TS Values 4.2 Fuzzy TS Model, Based on Fuzzified First Differences of TS Values 4.3 Fuzzy TS Model, Based on Elementary Fuzzy Tendencies 5 Experiments and Results 6 Conclusion References Inflation Rate Forecasting: Extreme Learning Machine as a Model Combination Method 1 Introduction 2 Extreme Learning Machine Method 3 Proposed Benchmarks and Forecasting Strategy 3.1 Benchmarks 3.2 Forecasting Strategy 4 Findings 4.1 Pseudo-Real-Time Experiment 5 Concluding Remarks References Time Series Analysis and Prediction in Other Real Problems Load Forecast by Multi-Task Learning Models: Designed for a New Collaborative World 1 Introduction 2 Objective 3 Multi-Task Learning Approach 4 Architecture Differences 5 The Classical Hilbert Space Approach 5.1 Projection Theorem 5.2 Parallel Processing Implementation 6 Case Study 6.1 The Challenge 6.2 The Proposed Solution 7 Conclusions References Power Transformer Forecasting in Smart Grids Using NARX Neural Networks 1 Introduction 2 System Identification Modeling 3 NARX Neural Network for Power Transformer Temperature Prediction 4 Power Transformation Center Datasets 5 Electrical Measurement Analysis from Power Transformers 5.1 Correlation Analysis 5.2 Granger Causality-Based Analysis 6 NARX Implementation and Evaluation Experiments 7 Conclusion References Short-Term Forecast of Emergency Departments Visits Through Calendar Selection 1 Introduction 1.1 Crowding and Boarding 1.2 Forecast Motivation 2 Methodology 2.1 Calendar Conditions 3 Model Evaluation 3.1 Results 3.2 Comparison to Other Models 4 Conclusion References Discordant Observation Modelling 1 Introduction 2 Related Work 3 Volatility Modelling 4 Evaluation 4.1 Text Analysis 4.2 Volatility 4.3 Normality 4.4 Unit Root Test 4.5 Trend and Seasonality 4.6 Goodness of Fit 4.7 Models 5 Conclusion References Applying Diebold–Mariano Test for Performance Evaluation Between Individual and Hybrid Time-Series Models for Modeling Bivariate Time-Series Data and Forecasting the Unemployment Rate in the USA 1 Introduction and Motivation 2 Materials and Methods 2.1 The Hybrid ARMAX-GARCH-GED Forecasting Model 2.2 The Zhang Hybrid Methodology 2.3 Forecasts Evaluation 3 Case Study (Data Sets in the Experiment) 3.1 Fitting the Hybrid ARMAX-GARCHX-GED Model 4 Evaluation of Forecasting Performance 4.1 Loss Function Criteria 4.2 Forecasting Evaluation Based on DM Test 5 Conclusions References Author Index