دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3
نویسندگان: Malcolm S. Longair
سری:
ISBN (شابک) : 1108484530, 9781108484534
ناشر: Cambridge University Press
سال نشر: 2020
تعداد صفحات: 639
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 29 مگابایت
در صورت تبدیل فایل کتاب Theoretical Concepts in Physics: An Alternative View of Theoretical Reasoning in Physics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مفاهیم نظری در فیزیک: نمای جایگزین استدلال نظری در فیزیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
در این رویکرد اصلی و یکپارچه به استدلال نظری در فیزیک، مالکوم لانگایر موضوع را از منظر فیزیک واقعی که توسط دانشمندان محقق انجام می شود، روشن می کند. این رویکرد با تمرکز بر بینش ها، نگرش ها و تکنیک های اساسی که ابزار فیزیکدان مدرن است، هیجان فکری و زیبایی موضوع را منتقل می کند. از طریق یک سری از هفت مطالعه موردی، یک دوره کارشناسی در فیزیک کلاسیک و کشف کوانتا از نقطه نظر چگونگی اکتشافات بزرگ و تغییرات دیدگاه بررسی می شود. این رویکرد مبارزات فکری مورد نیاز برای دستیابی به درک برخی از دشوارترین مفاهیم در فیزیک را روشن می کند. متن بسیار تحسین شده Longair به طور کامل بازبینی شده است و شامل مطالعات جدید در مورد فیزیک سیالات، مقاله عالی ماکسول در مورد معادلات میدان الکترومغناطیسی و مشکلات کیهانشناسی معاصر و کیهان بسیار اولیه است.
In this original and integrated approach to theoretical reasoning in physics, Malcolm Longair illuminates the subject from the perspective of real physics as practised by research scientists. Concentrating on the basic insights, attitudes and techniques that are the tools of the modern physicist, this approach conveys the intellectual excitement and beauty of the subject. Through a series of seven case studies, an undergraduate course in classical physics and the discovery of quanta are reviewed from the point of the view of how the great discoveries and changes of perspective came about. This approach illuminates the intellectual struggles needed to attain understanding of some of the most difficult concepts in physics. Longair's highly acclaimed text has been fully revised and includes new studies on the physics of fluids, Maxwell's great paper on equations for the electromagnetic field and problems of contemporary cosmology and the very early universe.
Contents Preface and Acknowledgements Origins Acknowledgements Figure Credits 1 Introduction 1.1 Pedagogical and Real Physics 1.2 Reflections on What Every Student Should Know 1.3 The Nature of Physics and Theoretical Physics 1.4 Environmental Influences 1.5 Final Disclaimer Notes Case Study I The Origins of Newton’s Laws of Motion and of Gravity 2 From Ptolemy to Kepler: The Copernican Revolution 2.1 Ancient History 2.2 The Copernican Revolution 2.3 Tycho Brahe: The Lord of Uraniborg 2.4 Johannes Kepler and Heavenly Harmonies Notes 3 Galileo and the Nature of the Physical Sciences 3.1 Introduction 3.2 Galileo as an Experimental Physicist 3.3 Galileo’s Telescopic Discoveries 3.4 Aristotelian versus Galilean Physics: The Heart of the Matter 3.5 The Trial of Galileo 3.6 Galilean Relativity 3.7 Reflections Notes 4 Newton and the Law of Gravity 4.1 Introduction 4.2 Lincolnshire 1642–61 4.3 Cambridge 1661–65 4.4 Lincolnshire 1665–67 4.5 Cambridge 1667–96 4.6 Newton the Alchemist 4.7 The Interpretation of Ancient Texts and the Scriptures 4.8 London 1696–1727 Appendix to Chapter 4: Notes on Conic Sections and Central Orbits Notes Case Study II Maxwell’s Equations 5 The Origin of Maxwell’s Equations 5.1 How It All Began 5.2 Michael Faraday: Mathematics without Mathematics 5.3 Maxwell’s Route to the Equations for the Electromagnetic Field Appendix to Chapter 5: Notes on Vector Fields Notes 6 Maxwell(1865): A Dynamical Theory of the Electromagnetic Field 6.1 PART I – Introductory 6.2 PART II – On Electromagnetic Induction 6.3 PART III – General Equations of the Electromagnetic Field 6.4 PART IV – Mechanical Actions in the Field 6.5 PART V – Theory of Condensers 6.6 PART VI – Electromagnetic Theory of Light 6.7 PART VII – Calculation of the Coefficients of Electromagnetic Induction 6.8 The Aftermath Notes 7 How to Rewrite the History of Electromagnetism 7.1 Introduction 7.2 Maxwell’s Equations as a Set of Vector Equations 7.3 Gauss’s Theorem in Electromagnetism 7.4 Time-Independent Fields as Conservative Fields of Force 7.5 Boundary Conditions in Electromagnetism 7.6 Amp ` ere’s Law 7.7 Faraday’s Law 7.8 Coulomb’s Law 7.9 The Biot–Savart Law 7.10 The Interpretation of Maxwell’s Equations in Material Media 7.11 The Energy Densities of Electromagnetic Fields 7.12 Concluding Remarks Notes CaseStudy III Mechanics and Dynamics: Linear and Non-linear 8 Approaches to Mechanics and Dynamics 8.1 Newton’s Laws of Motion 8.2 Principles of ‘Least Action’ 8.3 The Euler–Lagrange Equations 8.4 Lagrangians, Conservation Laws and Symmetry 8.5 Lagrangians, Small Oscillations and Normal Modes 8.6 Hamilton’s Equations 8.7 Hamilton’s Equations and Poisson Brackets 8.8 The Hamilton–Jacobi Equations and Action–Angle Variables 8.9 A Warning Notes 9 The Motion of Fluids 9.1 The Equation of Continuity 9.2 The Equations of Motion for an Incompressible Fluid in the Absence of Viscosity 9.3 Some Applications of Bernoulli’s Theorem 9.4 Gravity Waves in Shallow and Deep Water 9.5 The Equation of Motion of an Incompressible Fluid Including Viscous Forces 9.6 Stokes’ Formula for Highly Viscous Flow 9.7 Vorticity, Circulation and Kelvin’s Circulation Theorem 9.8 Concluding Remarks Notes 10 Dimensional Analysis,Chaos and Self-Organised Criticality 10.1 Introduction 10.2 Dimensional Analysis 10.3 Introduction to Chaos 10.4 Scaling Laws and Self-Organised Criticality 10.5 Beyond Computation Notes Case Study IV Thermodynamics and Statistical Physics 11 Basic Thermodynamics 11.1 Heat and Temperature 11.2 Heat as Motion versus the Caloric Theory of Heat 11.3 The First Law of Thermodynamics 11.4 The Origin of the Second Law of Thermodynamics 11.5 The Second Law of Thermodynamics 11.6 Entropy 11.7 The Law of Increase of Entropy 11.8 The Differential Form of the Combined First and Second Laws of Thermodynamics Appendix to Chapter 11: Maxwell’s Relations and Jacobians Notes 12 Kinetic Theory and the Origin of Statistical Mechanics 12.1 The Kinetic Theory of Gases 12.2 Kinetic Theory of Gases: First Version 12.3 Kinetic Theory of Gases: Second Version 12.4 Maxwell’s Velocity Distribution 12.5 The Viscosity of Gases 12.6 Pedagogical Digression (1): A Numerical Approach to the Boltzmann and Maxwell Distributions 12.7 The Statistical Nature of the Second Law of Thermodynamics 12.8 Entropy and Probability 12.9 Entropy and the Density of States 12.10 Pedagogical Digression (2): A Numerical Approach to the Law of Increase of Entropy 12.11 Gibbs Entropy and Information 12.12 Concluding Remarks Notes Case StudyV The Origins of the Concepts of Quantisation and Quanta 13 Black-Body Radiation up to 1895 13.1 Physics and Theoretical Physics in 1890 13.2 Kirchhoff’s Law of Emission and Absorption of Radiation 13.3 The Stefan–Boltzmann Law 13.4 Wien’s Displacement Law and the Spectrum of Black-Body Radiation Notes 14 1895–1900: Planck and the Spectrum of Black-Body Radiation 14.1 Planck’s Early Career 14.2 Oscillators and Their Radiation in Thermal Equilibrium 14.3 The Equilibrium Radiation Spectrum of a Harmonic Oscillator 14.4 Towards the Spectrum of Black-Body Radiation 14.5 The Primitive Form of Planck’s Radiation Law 14.6 Rayleigh and the Spectrum of Black-Body Radiation 14.7 Comparison of the Laws for Black-Body Radiation with Experiment Appendix to Chapter 14: Rayleigh’s Paper of 1900 Notes 15 Planck’s Theory of Black-Body Radiation 15.1 Introduction 15.2 Boltzmann’s Procedure in Statistical Mechanics 15.3 Planck’s Analysis 15.4 Planck and ‘Natural Units’ 15.5 Planck and the Physical Significance of h 15.6 Why Planck Found the Right Answer Notes 16 Einstein and the Quantisation of Light 16.1 1905: Einstein’s Annus Mirabilis 16.2 Einstein (1905) On a Heuristic Viewpoint Concerning the Production and Transformation of Light 16.3 The Quantum Theory of Solids 16.4 Debye’s Theory of Specific Heat Capacities 16.5 The Specific Heat Capacities of Gases Revisited 16.6 Conclusion Notes 17 The Triumph of the Light Quantum Hypothesis 17.1 The Situation in 1909 17.2 Fluctuations of Particles and Waves 17.3 Fluctuations of Randomly Superposed Waves 17.4 Fluctuations in Black-Body Radiation 17.5 The First Solvay Conference 17.6 Experimental and Theoretical Advances 1911 to 1925 17.7 Einstein (1916) ‘On the Quantum Theory of Radiation’ 17.8 Compton Scattering 17.9 The Threshold of Quantum Mechanics 17.10 The Story Concluded Notes Case StudyVI Special and General Relativity 18 Special Relativity: A Study in Invariance 18.1 Introduction 18.2 Geometry and the Lorentz Transformation 18.3 Three-Vectors and Four-Vectors 18.4 Relativistic Dynamics: The Momentum and Force Four-Vectors 18.5 The Relativistic Equations of Motion 18.6 The Frequency Four-Vector 18.7 Lorentz Contraction and the Origin of Magnetic Fields 18.8 Reflections Notes 19 An Introduction to General Relativity 19.1 Introduction 19.2 Essential Features of the Relativistic Theory of Gravity 19.3 Isotropic Curved Spaces 19.4 The Route to General Relativity 19.5 The Schwarzschild Metric 19.6 Particle Orbits about a Point Mass 19.7 Advance of the Perihelia of Planetary Orbits 19.8 Light Rays in Schwarzschild Space-Time 19.9 Particles and Light Rays near Black Holes 19.10 Circular Orbits about Schwarzschild Black Holes 19.11 Gravitational Waves Notes Case Study VII Cosmology and Physics 20 Cosmology 20.1 Cosmology and Physics 20.2 Basic Cosmological Data 20.3 The Robertson–Walker Metric 20.4 Observations in Cosmology 20.5 The Standard World Models 20.6 Historical Interlude: Steady State Theory 20.7 The Thermal History of the Universe 20.8 Nucleosynthesis in the Early Universe 20.9 The Values of the Cosmological Parameters Notes 21 Dark Matter, Dark Energy and the Inflationary Paradigm 21.1 Introduction 21.2 Dark Matter and Dark Energy 21.3 The Big Problems 21.4 A Pedagogical Interlude: Distances and Times in Cosmology 21.5 The Inflationary Universe: Historical Background 21.6 The Origin of the Spectrum of Primordial Perturbations 21.7 Baryogenesis 21.8 The Planck Era Notes Author Index Subject Index