دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Garcia-Iriepa C., Marazzi M. (ed.) سری: ISBN (شابک) : 9780323917384 ناشر: Elsevier سال نشر: 2023 تعداد صفحات: 515 [517] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 28 Mb
در صورت تبدیل فایل کتاب Theoretical and Computational Photochemistry: Fundamentals, Methods, Applications and Synergy with Experimental Approaches به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فتوشیمی نظری و محاسباتی: مبانی، روش ها، کاربردها و هم افزایی با رویکردهای تجربی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فرآیندهای ناشی از نور به دلیل خواص متنوع و کاربرد آنها در مناطق مختلف از انرژی پاک تا اصلاح محیط زیست همچنان موضوع مطالعه فشرده هستند. در حالی که آزمایش اطلاعات مهمی را در مورد چنین فرآیندهای فتوشیمیایی فراهم می کند، روش های محاسباتی و نظری به طور فزاینده ای ابزار مهمی هستند. فتوشیمی نظری و محاسباتی: مبانی، روشها، کاربردها و همافزایی با رویکردهای تجربی، مروری جامع از این روشها ارائه میکند و طیف گستردهای از سیستمهای فوتواکتیو و فرآیندهای فتوشیمیایی را نشان میدهد که میتوان از آنها برای کاوش استفاده کرد. پس از مقدمهای بر فتوشیمی، کتاب ادامه میدهد. برای بحث در مورد روشهای شیمی محاسباتی کلیدی که برای مطالعه فرآیندهای ناشی از نور در دهه گذشته به کار رفتهاند، و موضوعات تحقیقاتی اخیر را که این روشها در آنها به کار گرفته شدهاند، تشریح کند. با بحث در مورد هم افزایی بین داده های تجربی و محاسباتی، نشان می دهد که چگونه مطالعات نظری می تواند به درک و منطقی کردن یافته های تجربی، هم اکنون و هم در آینده کمک کند. فتوشیمی نظری و محاسباتی: مبانی، روش ها، کاربردها و هم افزایی با رویکردهای تجربی، با تکیه بر تجربه ویراستاران و همکاران متخصص خود، راهنمای مفیدی برای شیمیدانان نظری و تحقیقات تجربی در فتوشیمی است که علاقه مند به استفاده بهتر از روش های محاسباتی برای فتوشیمی خود هستند. کار خود مبانی فتوشیمی را مرور میکند، به افراد تازه وارد در این زمینه کمک میکند تا مفاهیم کلیدی را درک کنند. داده ها و الهام بخشیدن به کاربرد بیشتر این روش ها در سایر فرآیندهای فتوشیمیایی
Light-induced processes continue to be the subject of intensive study, thanks to their diverse properties and applicability to areas ranging from clean energy to environmental remediation. Whilst experimentation provides important information on such photochemical processes, computational and theoretical methods are proving to be increasingly important tools. Theoretical and Computational Photochemistry: Fundamentals, Methods, Applications and Synergy with Experimental Approaches provides a comprehensive overview of such methods, showing the wide range of photoactive systems and photochemical processes they can be used to explore.After an introduction to photochemistry, the book goes on to discuss the key computational chemistry methods applied to the study of light-induced processes over the past decade, and further outlines recent research topics these methods have been applied to. By discussing the synergy between experimental and computational data, it highlights how theoretical studies could aid understanding and rationalizing of experimental findings, both now and in the future. Drawing on the experience of its expert editors and contributors, Theoretical and Computational Photochemistry: Fundamentals, Methods, Applications and Synergy with Experimental Approaches is a helpful guide for both theoretical chemists and experimental researches in photochemistry who are interested in better utilizing computational photochemistry methods for their own work. Reviews the fundamentals of photochemistry, helping those new to the field in understanding key concepts Provides detailed guidance and comparison of computational and theoretical methods, highlighting the suitability of each method for different case studies Outlines current applications to encourage discussion of the synergy between experimental and computational data, and inspiring further application of these methods to other photochemical processes
Cover Half Title Theoretical and Computational Photochemistry: Fundamentals, Methods, Applications and Synergy with Experimental Approaches Copyright Contents Contributors Preface Part I. Fundamentals 1. Introduction to molecular photophysics 1.1. Interaction between electromagnetic radiation and molecules 1.1.1. Electromagnetic radiation 1.1.2. Time-dependent perturbation theory: A tool for describing the matter-radiation interaction 1.1.3. Electric dipole transitions 1.1.4. Spontaneous emission 1.2. Quantization of energy 1.3. The Franck-Condon principle 1.4. Electronic absorption spectra 1.4.1. Transition energy 1.4.2. Transition intensity: The oscillator strength and the transition dipole moment 1.4.3. Absorption band shape: The dynamic effect and the vibronic coupling 1.4.4. Multiphotonic absorption 1.5. Fluorescence and phosphorescence emission 1.5.1. Fluorescence 1.5.1.1. Fluorescence spectrum 1.5.1.2. Kashas rule 1.5.1.3. Fluorescence lifetime and quantum yield 1.5.1.4. Fluorescence quenching 1.5.1.5. Factors influencing fluorescence 1.5.1.6. Steady-state vs time-resolved fluorescence 1.5.1.7. Anti-Stokes photon emission 1.5.2. Phosphorescence 1.5.2.1. Phosphorescence from doublet and quartet states References 2. Theoretical grounds in molecular photochemistry 2.1. The Jablonski diagram 2.2. Potential energy surfaces and reaction paths 2.3. The Born-Oppenheimer approximation in detail: Adiabatic and diabatic representations 2.3.1. Separation of nuclei and electrons motion 2.3.2. Adiabatic representation 2.3.3. Diabatic representation 2.4. When potential energy surfaces do cross: Avoided crossings and conical intersections 2.5. Excited state molecular dynamics References Part II. Methods 3. Density-functional theory for electronic excited states 3.1. Overview 3.2. Linear-response (``time-dependent´´) DFT 3.2.1. Theoretical formalism 3.2.1.1. Linear-response theory 3.2.1.2. Adiabatic approximation 3.2.1.3. Tamm-Dancoff approximation 3.2.1.4. Analytic gradients 3.2.2. Performance and practice 3.2.2.1. Restriction of the excitation manifold 3.2.2.2. Exchange-correlation functionals 3.2.2.3. Accuracy for vertical excitation energies 3.2.2.4. Visualization 3.2.3. Systemic problems 3.2.3.1. Description of charge transfer 3.2.3.2. Conical intersections 3.3. Excited-state Kohn-Sham theory: The DeltaSCF approach 3.3.1. Theory 3.3.1.1. General considerations 3.3.1.2. Orbital-optimized non-aufbau SCF solutions 3.3.1.3. Transition potential methods 3.3.2. Examples 3.4. Time-dependent Kohn-Sham theory: ``Real-time´´ TDDFT 3.4.1. Theory 3.4.2. Examples References 4. Algebraic diagrammatic construction schemes for the simulation of electronic spectroscopies 4.1. Introduction 4.2. Theoretical background 4.2.1. Intermediate-state representation 4.2.2. State properties and geometries 4.2.3. The physical meaning of ISR basis states and EE-ADC matrix elements 4.2.4. Relation of different ADC schemes 4.3. Comparison of ADC to configuration interaction and coupled cluster methods 4.4. ADC variants for excited states 4.4.1. Semiempirical EE-ADC schemes 4.4.2. EE-ADC schemes for multireference systems 4.4.3. EE-ADC methods for X-ray spectroscopies 4.5. Computational spectroscopy in complex environments with ADC 4.6. Computational photochemistry with ADC 4.7. Outlook and concluding remarks References 5. Multiconfigurational quantum chemistry: The CASPT2 method 5.1. Introduction 5.2. Prelude: CASSCF 5.3. CASPT2 theory 5.3.1. CASPT2 fundamentals 5.3.1.1. The H0 operator 5.3.1.2. Defining the first-order interacting space 5.3.1.3. Computing the first-order interacting space and the second-order energy 5.3.2. The intruder state problem 5.3.3. Shift techniques 5.3.4. Alternative selection of the zeroth-order Hamiltonian 5.3.4.1. CASPT2 applied to an open-shell system 5.3.4.2. The gi family of corrections 5.3.4.3. The IPEA shift 5.3.4.4. Use of Koopmans matrices, CASPT2-K 5.3.4.5. The zeroth-order Hamiltonians of Dyall and Fink 5.3.4.6. Summary 5.4. Multistate CASPT2 theory 5.5. Performance 5.6. Future developments 5.7. Summary and conclusions References 6. Machine learning methods in photochemistry and photophysics 6.1. Introduction 6.2. Machine learning models 6.2.1. Machine learning tasks 6.2.2. k-Nearest neighbor 6.2.3. Support vector machine 6.2.4. Kernel methods 6.2.5. Neural networks 6.3. Representations of molecules 6.3.1. Molecular strings and fingerprints 6.3.2. Molecular descriptors 6.3.3. Automatically generated descriptors 6.4. Training data for machine learning 6.4.1. Excited-state database across chemical space 6.4.2. Molecule-specific data generation 6.5. Applications of machine learning in photochemistry and photophysics 6.5.1. Machine learning-assisted high-throughput virtual screening 6.5.2. Machine learning-predicted electronic spectroscopy 6.5.3. Machine learning nonadiabatic molecular dynamics 6.5.4. Machine learning-extracted chemical insights from data 6.6. Summary References 7. Polaritonic chemistry 7.1. Preliminary considerations on the electromagnetic field 7.2. Polaritonic eigenvalues and eigenstates 7.2.1. Cavity Born-Oppenheimer and vibrational strong coupling 7.2.2. Electronic strong coupling (ESC) 7.3. Polaritonic potential energy surfaces (PoPESs) 7.3.1. A didactical case: Azobenzene polaritonic potential energy surfaces (PoPESs) 7.3.2. Many molecules and dark states 7.4. Polariton dynamics and cavity losses 7.4.1. Nuclear dynamics in polaritonic systems: Full quantum vs semiclassical 7.5. Summary References Part III. Applications 8. First-principles modeling of dye-sensitized solar cells: From the optical properties of standalone dyes to the ... 8.1. Introduction 8.2. Computational modeling of DSSCs: Methods, limitations, and practical strategies 8.2.1. Generalities 8.2.2. Electronic structure and optical properties of dyes in solution 8.2.3. Electronic structure and optical properties of semiconductor materials and dye-sensitized interfaces 8.2.4. Machine learning and semiempirical methods applied to DSSCs 8.3. Design rules for Ru(II) sensitizers: The role of spin-orbit coupling (SOC) 8.4. Modeling the photophysics of Fe(II) metal complexes: Tools and findings 8.5. Interfacial properties of Fe-NHC-sensitized TiO2 8.6. Conclusions References 9. Solar cells: Organic photovoltaic solar cells 9.1. Introduction 9.1.1. Organic photovoltaics 9.1.2. OPV materials 9.1.3. Models to describe charge generation in OSCs 9.2. Excitonic processes: Excited states at the donor/acceptor interfaces 9.2.1. Electronic structure methods to describe the excited states at D/A OPV interfaces 9.2.2. Analytical tools to characterize the excited-state wavefunction 9.2.3. Examples of polymer/fullerene OPV interfaces 9.3. Time-dependent processes: Excited-state dynamics in donor and donor/acceptor domains 9.3.1. Excited-state dynamics: Brief overview of nonadiabatic surface hopping and multiconfiguration time-dependent Hartr ... 9.3.2. Excited-state dynamics of oligothiophenes as prototypes for P3HT 9.3.3. Examples of polythiophene-/fullerene-based interfaces 9.4. Conclusions References 10. Perovskite-based solar cells 10.1. Introduction 10.2. First-principles modeling of perovskites 10.3. Point defects in perovskites 10.3.1. First-principles modeling of point defects 10.3.2. Ion migration in perovskite 10.3.3. Photochemistry of iodine Frenkel defects 10.4. Interfaces in perovskite solar cells 10.4.1. Understanding charge extraction at the perovskite/ETL interface 10.4.2. Chemical tuning of the perovskite/HTL interface 10.5. Degradation and passivation of metal-halide perovskites 10.5.1. Water-induced degradation of lead-halide perovskites 10.5.2. Instability of lead-free perovskites in water environment 10.5.3. Perovskite surface passivation 10.6. Summary References 11. Thermally activated delayed fluorescence 11.1. Introduction 11.2. Excited states calculations 11.3. Condensed phase effects 11.4. Role of charge transfer and local excited states 11.5. Vibronic effects and rate calculations 11.6. Synopsis References 12. DNA photostability 12.1. Photophysics of canonical nucleobases in the gas phase. Photostability 12.1.1. Absorption properties in the gas phase 12.1.2. Photophysical paths for purine nucleobases 12.1.3. Excited-state dynamics of purine nucleobases 12.1.4. Photophysical paths for pyrimidine nucleobases 12.1.5. Excited-state dynamics of pyrimidine nucleobases 12.2. Photophysics of canonical nucleobases in solution. Impact of the solvent effects into the photostability 12.2.1. Purine nucleobases 12.2.1.1. Absorption spectra 12.2.1.2. Photophysical paths 12.2.1.3. Excited-state dynamics 12.2.2. Pyrimidine nucleobases 12.2.2.1. Absorption spectra 12.2.2.2. Photophysical paths 12.2.2.3. Excited-state dynamics 12.3. Photophysics of modified nucleobases. Impact of the substitution effects into the photostability 12.3.1. Addition of external groups into the pyrimidine/purine core 12.3.1.1. Methylation (CH3) 12.3.1.2. Amination (NH2) 12.3.1.3. Oxo incorporation (CO) 12.3.1.4. Other groups 12.3.2. Substitution of internal groups into the pyrimidine/purine core 12.3.2.1. Oxygen-by-sulfur or carbon-by-sulfur substitution 12.3.2.2. Carbon-by-nitrogen or nitrogen-by-carbon substitutions 12.4. Photophysics of canonical nucleobases in DNA/RNA environments. Photostability mechanisms 12.4.1. Single monomers embedded in a DNA/RNA environment 12.4.2. DNA/RNA light absorption and excited-state delocalization 12.4.3. Watson-Crick base pairing and interstrand charge transfer states. A doorway to proton transfer and photostability 12.5. Final remarks and future perspectives References 13. Fluorescent proteins 13.1. Introduction 13.2. Modeling of absorption spectra 13.3. Frster resonance energy transfer 13.4. Photochemical reactions 13.5. Concluding remarks References 14. Chemi- and bioluminescence: A practical tutorial on computational chemiluminescence 14.1. Introduction 14.2. Design of the methodology 14.3. Identification of the molecule responsible for chemiexcitation 14.3.1. Walsh correlation diagrams 14.3.2. Reaction paths for the chemiexcitation of small models 14.3.3. ``Activator´´-``chemiluminophore´´ configuration 14.4. Reaction paths of the isolated system 14.4.1. Formation of the chemiluminophore 14.4.2. Chemiexcitation 14.4.3. Light emission 14.4.4. Identification of relevant parameters in challenging systems 14.5. Solvent effects 14.6. Dynamical aspects 14.7. A perspective on future research directions References 15. Chemi- and bioluminescence: Bioluminescence 15.1. Introduction 15.2. Bioluminescence, a reaction scheme of a chemiluminescent system catalyzed by a protein: Challenges for theoretical ... 15.2.1. Overview of a bioluminescent process 15.2.2. Generation of HEI 15.2.3. Decomposition of HEI to the light emitter 15.2.4. Emission of light 15.3. Tools and choices of the theoretical chemist: Divide to conquer 15.3.1. Performing calculation of a small chemiluminescent model in vacuum 15.3.2. Performing calculation of a chemiluminescent model in the solvent 15.3.3. Performing calculation of a bioluminescent model in the protein 15.3.3.1. Completing the protein 15.3.3.2. Docking the ligand in the protein 15.3.3.3. Getting the force field parameters for the substrate 15.3.3.4. Relaxing the structure 15.3.3.5. QM/MM calculations 15.3.4. Modeling spectral shape 15.4. Modeling formation of HEI: Case of firefly bioluminescent system 15.4.1. From d-luciferin substrate to d-luciferyl adenylate intermediate 15.4.2. Approach of dioxygen to the d-luciferyl adenylate intermediate 15.4.3. Deciphering between reaction schemes for the reaction of dioxygen with the d-luciferyl adenylate intermediate 15.4.4. Formation of the dioxetanone ring: Addition-elimination mechanism? 15.5. Modeling decomposition of HEI leading to the light emitter in firefly 15.5.1. Failure of small models 15.5.2. Model in vacuum 15.5.3. Model in proteins 15.6. Modeling light emission 15.6.1. Challenges in modeling and experiments 15.6.2. Nature of the light emitter of firefly: The oxyluciferin 15.6.3. Use of analogs of firefly oxyluciferin 15.6.4. Influence of the protein on the emitted light color 15.6.5. Example of one mutation in luciferase 15.6.6. Different colors in different luciferases 15.6.7. Modeling emission spectra for substrate analogs 15.7. Conclusion References 16. Photocatalysis 16.1. Introduction and historical overview 16.2. Fundamental mechanism of heterogeneous photocatalysis 16.2.1. Light absorption and photoexcitation 16.2.2. Charge migration and recombination 16.2.3. Photoredox reactions 16.3. Brief overview of computational methodologies 16.3.1. Kohn-Sham density functional theory (KS-DFT) 16.3.2. Multireference and multiconfigurational methods 16.3.3. Combined quantum mechanical and molecular mechanical (QM/MM) methods 16.4. Computational studies 16.4.1. TiO2 16.4.2. ZnO 16.4.3. MoS2 16.4.4. UiO-66 16.4.5. PCN-601 16.4.6. g-C3N4 16.5. Outlook References 17. Nonlinear spectroscopies 17.1. Introduction 17.2. Basic concepts 17.2.1. Introduction to the Liouville space 17.2.2. The displaced Brownian oscillator model 17.2.3. Including solvent effects through energy-gap correlation functions 17.3. Linear absorption 17.3.1. Linear spectroscopy in the Liouville space 17.3.1.1. Spectral lineshapes in linear absorption 17.3.2. The nuclear ensemble approach 17.3.2.1. Automated NEA broadenings with machine learning 17.4. Nonlinear spectroscopy 17.4.1. Nonlinear spectroscopy in the Liouville space 17.4.2. Nonlinear spectroscopies within a static approximation 17.4.2.1. The nuclear ensemble approach to nonlinear spectroscopy 17.4.3. Spectral broadenings in nonlinear spectroscopies 17.4.3.1. Time-resolved NEA approach to nonlinear spectroscopy 17.5. Overview References 18. Mechano-photochemistry 18.1. Introduction 18.2. Mechanochemical models 18.3. Methodology and models in mechano-photochemistry 18.3.1. Absorption and emission tuning 18.3.2. Triplet energy transfer modulation 18.3.3. Mechanical effect on conical intersections/avoided crossings 18.3.4. Non-adiabatic molecular dynamics with explicit inclusion of mechanical external forces 18.3.5. Substituent effect as mechanical entity 18.4. Mechanical control of molecular photophysics and photoreactivity 18.4.1. Excitation energy 18.4.1.1. Complete mechanochemical control of the absorption spectrum 18.4.1.2. Mechanochemical control of absorption spectrum in photoswitches 18.4.2. Mechanochemical control of photochemical reactivity 18.4.2.1. Mechanical control of trans-cis photoisomerization quantum yield 18.4.2.2. Mechanical control of photoswitches in molecular solar thermal energy storage systems 18.4.2.3. Mechanical control of photoswitching of stilbenes with molecular force probes 18.4.2.4. Mechanical control of triplet-sensitized oxa-di-π-methane rearrangement 18.5. Conclusions and perspectives References Part IV. Synergy with experimental approaches 19. Interplay between computations and experiments in photochemistry 19.1. Introduction 19.2. Correlation between the principal experimental techniques used in photochemistry and computational methods 19.2.1. UV-Vis spectroscopy 19.2.2. Photoluminescence spectroscopy, fluorescence, and phosphorescence 19.2.3. Time-resolved spectroscopy and transient absorption spectroscopy (TAS) 19.2.4. Other techniques 19.3. Different case studies combining theory and experiments 19.3.1. Design of new sunscreens by computational methods 19.3.2. Spectroscopic characterization of different families of photoswitches 19.3.3. Better understanding time-resolved spectroscopy 19.3.4. Two-photon absorption 19.4. Conclusions References Index Cover back