دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Terry E. Moschandreou, Keith Afas, Khoa Nguyen سری: ISBN (شابک) : 9781032589251, 9781003452256 ناشر: CRC Press سال نشر: 2024 تعداد صفحات: [339] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Theoretical and Computational Fluid Mechanics: Existence, Blow-up, and Discrete Exterior Calculus Algorithms به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مکانیک سیالات نظری و محاسباتی: الگوریتمهای وجود، دمیدن و حساب دیفرانسیل بیرونی گسسته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب موضوعات اصلی و جاری در دینامیک سیالات نظری و کاربردی را در تقاطع یک محیط ریاضی و غیر ریاضی متمرکز می کند. این کتاب برای هر کسی که سطح پایه ای از درک دینامیک سیالات را دارد و در عین حال برای کسانی که درک عمیق تری دارند جذاب است، قابل دسترسی است.
This book centralizes the main and current topics in theoretical and applied fluid dynamics at the intersection of a mathematical and non-mathematical environment. The book is accessible to anyone with a basic level of understanding of fluid dynamics and yet still engaging for those of a deeper understanding.
Cover Half Title Series Page Title Page Copyright Page Dedication Table of Contents Preface Authors Chapter 1 Introduction to Fluid Dynamics 1.1 Introduction 1.1.1 Steady Parallel Viscous Flow 1.1.2 Properties of a Flow 1.1.3 Exact Equation Leads to the Diffusion Equation 1.2 Kinematics in Fluids 1.2.1 Material Time Derivative 1.2.2 Conservation of Mass 1.2.3 Kinematic Boundary Conditions 1.2.4 Streamfunction in the Incompressible Case 1.3 Dynamics 1.3.1 Navier-Stokes Equations 1.3.2 Pressure 1.3.3 Reynolds Number 1.4 Scale Invariance of Navier-Stokes Equations 1.5 Complex Potentials 1.5.1 Stagnation Point Flow u = 0 1.6 Inviscid Flow 1.6.1 Momentum Equation for Inviscid ν = 0 Incompressible Fluid 1.6.2 The Case of Linear Flows 1.6.3 Vorticity Equation Exercises Chapter 2 Geometric Algebra 2.1 The Geometric Product 2.1.1 Collinearity and Orthogonality 2.1.2 The Dot and Wedge Products 2.1.3 Geometric Algebra 2.2 Rotations 2.2.1 The Matrix Product 2.2.2 The Geometric Product Exercises Chapter 3 Compressible Navier–Stokes Equations 3.1 Introduction 3.2 A Solution Procedure For δ Arbitrarily Small in Quantity 3.3 Characterization of the Sign of the Vorticity 3.4 Non-Linear Further Reduction 3.5 Stokes Theorem Applied to Dynamic Surfaces 3.6 Analysis for Hunter Saxton Equation Exercises Chapter 4 Hydrodynamic Stability and Maple 4.1 Introduction 4.2 Rayleigh–Taylor Instability 4.2.1 Normal Mode Analysis 4.3 The Rayleigh-Taylor Instability for Two Incompressible Fluids 4.4 Rayleigh-Benard Convection 4.5 Solution of Rayleigh Benard Convection with Maple 4.6 Classical Kelvin-Helmholtz Instability Exercises Chapter 5 Mathematics Preliminaries 5.1 Introduction 5.2 Mathematics Preliminaries 5.3 The Lebesgue Integral Exercises Chapter 6 Simplified Periodic Navier–Stokes (PNS) and Rayleigh-Plesset (RP) Equations 6.1 Introduction 6.2 Onset of Turbulence: Eddies and Vorticies in Incompressible Fluids 6.2.1 3D Incompressible Navier–Stokes Equations 6.2.2 Decomposition of NSE’s, Limit Cycles, and Vorticies 6.2.3 Convergence & Singularities of Incompressible Eddies and Vortices along Edge of Cube Lattice 6.2.4 Norm Analysis of Eq. (6.7) 6.3 Novel Variational Formulation of Cavitation Dynamics 6.3.1 Membrane Statistical Dynamics as a Variational Technique 6.3.2 Identifying a Lagrangian Density for the Rayleigh-Plesset Equations 6.3.3 Spherical Decomposition of Lagrangian Density 6.3.4 Accounting for Energy Dissipation in a Rayleigh-Plesset Process 6.4 Conclusion: Incompressible Eddies/Vortices & Cavitation Dynamics 6.5 Appendix Chapter 7 Introduction to Flows and Dynamical Systems 7.1 Tangent Vectors 7.2 Local Flows 7.3 Applied Dynamical Systems and Bifurcation 7.3.1 Flows on the Line 7.3.2 Linear Stability Analysis 7.3.3 Potential Functions 7.3.4 Flows on the Circle 7.3.5 Nonuniform Oscillator Exercises Chapter 8 Numerical Analysis of 3D Periodic Navier–Stokes Equations and the Maple Environment 8.1 Introduction to the Periodic Navier–Stokes Equations 8.2 Equivalent Form of 3D Periodic Navier–Stokes Equations 8.2.1 Decomposition of NSEs 8.2.2 Liutex Vector and Respective Governing Equations 8.2.3 Case 1 8.2.4 JacobiSN Solution 8.2.5 The Comparison of Blowup for Each of df**[sub(4)]/ds and Φ(s) 8.3 Analysis of F**[sub(4)] (S) and Φ(S) 8.3.1 Setting the Time Derivative of F[sub(4)] (s) Equal to – f[sub(0)] (s) 8.3.2 Case 2 8.4 General Case When Λ is Not Excluded 8.5 No Finite Time Blowup When Pressure is Decreasing Cantor-Like Function 8.5.1 The Cantor Set 8.6 Observation of a Residual Set 8.6.1 Base 3 Arithmetic 8.7 The Cantor Function 8.8 Lambert W Function 8.9 Matching 8.9.1 Analysis for the Non-Blowup on Turbulent Cantor-Dust 8.10 Cantor Function Replaced by Linear Form 8.10.1 Quantitative Bounds for Critically Bounded Solution to Navier–Stokes Equations 8.11 Figures Confirming No Blowup for Third Component of Velocity of PNS Solution for Sums of Cantor Functions 8.12 General Solution With No Restrictions on Forcing and Spatial Velocities 8.13 Discussion and Conclusion 8.14 Appendix 1 8.15 Appendix 2 Exercises Chapter 9 Introduction to Fractional Calculus 9.1 Introduction 9.1.1 The Gamma Function 9.1.2 Properties of Gamma Function 9.1.3 An Important Representation of the Gamma Function 9.2 Beta Function 9.3 The Mittag-Leffler Function 9.4 Riemann-Liouville Fractional Derivatives 9.5 Integer Order Integration-Differentiation 9.6 Integrals of Arbitrary Order 9.7 Derivatives of Arbitrary Order 9.8 Fractional Derivative Example 9.9 Composition with Integer-Order Derivatives 9.10 Composition with Fractional Derivatives 9.11 Caputo’s Fractional Derivative 9.12 Caputo Fractional Differential Operator 9.13 Main Properties 9.13.1 Representation of Caputo Fractional Derivative 9.13.2 Interpolation Theory 9.13.3 Linearity of Operator 9.13.4 Non-Commutation Property 9.14 The Laplace Transform 9.15 Caputo Versus Riemann-Liouville Operator 9.16 The Constant Function 9.17 Connection with the Riemann-Liouville Operator 9.18 Examples of Fractional Derivatives 9.19 The Constant Function 9.20 The Power Function 9.21 The Exponential Function 9.22 Some Other Functions 9.23 Fractional Time and Multi-Fractional Space Incompressible and Compressible Navier–Stokes Equations 9.24 Continuity Equation of Unsteady Fluid Flow in Fractional Time and Multi-Fractional Space 9.25 Momentum Equations of Unsteady Flow in Fractional Time and Multi-Fractional Space Exercises Chapter 10 Introduction to Simplicial Complexes, and Discrete Exterior Calculus (DEC) 10.1 Introduction 10.1.1 Previous Numerical Methods 10.1.2 Discrete Exterior Calculus as Alternative to FD/FE-Methods 10.2 Exterior Calculus Preliminaries 10.2.1 Exterior Derivative on k-Forms, (dΣ) 10.2.2 Hodge Star Operator, (*Σ) 10.2.3 Co-Differential Operator and Analogues to the Divergence of Vector Fields on Manifolds 10.2.4 Laplace-deRham Operator and Analogues to the Laplace-Beltrami Operator 10.2.5 Integration, Stokes Theorem, and Ostrogradsky’s Theorem 10.3 Exterior Calculus Discretization 10.3.1 Simplicial Complexes 10.3.2 Discretized Exterior Forms 10.3.3 Exterior Derivative on Simplicial Complexes 10.3.4 Hodge Star Operator on Simplicial Complexes 10.3.5 Hodge-deRham Co-Homology 10.3.6 Specialized Differential Operators 10.3.7 Graphical Hodge-deRham Commutative Diagrams 10.4 Conclusion Chapter 11 Applications of Discrete Exterior Calculus (DEC) to Fluid Mechanics and Fluid-Structure Interactions 11.1 Introduction 11.1.1 Partial Differential Equation (Scalar): Poisson’s and Laplace’s Equation 11.1.2 Partial Differential Equation (Vector): Poiseuille Flow and Stokes Flow 11.2 Methods 11.2.1 DEC Poisson Equation on Plane 11.2.2 DEC Laplace Equation on Annulus 11.2.3 DEC Poiseuille Flow with Steady-State Boundary and Initial Conditions 11.2.4 DEC Stokes Flow around Hole with Steady-State Boundary and Initial Conditions 11.2.5 Ptačkova Reconstruction 11.3 Results 11.3.1 Poisson Equation Solution on Plane 11.3.2 Laplace Equation Solution on Annulus 11.3.3 Poiseuille Flow with Steady-State Boundary and Initial Conditions 11.3.4 Stokes Flow around Hole with Steady-State Boundary and Initial Conditions 11.4 Discussion 11.4.1 Solving Scalar PDEs 11.4.2 Validation of Poiseuille Flow 11.4.3 Observations on Stokes Flow 11.5 Conclusion Appendix A Computer Programs Bibliography Index