دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Maurice de Gosson
سری: Advanced Textbooks in Mathematics
ISBN (شابک) : 1786343096, 9781786343093
ناشر: WSPC (Europe)
سال نشر: 2017
تعداد صفحات: 251
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 6 مگابایت
در صورت تبدیل فایل کتاب The Wigner Transform به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تبدیل ویگنر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Introduction Contents Part I. General Mathematical Framework 1. Phase Space Translations and Reflections 1.1 Some Notation 1.1.1 The spaces ℝⁿ_x and ℝⁿ_p 1.1.2 The symplectic structure of phase space 1.1.3 Some usual function spaces 1.1.4 Fourier transform 1.2 The Heisenberg-Weyl and Grossmann-Royer Operators 1.2.1 The displacement Hamiltonian 1.2.2 The Heisenberg-Weyl operators 1.2.3 The Grossmann-Royer parity operators 1.3 A Functional Relation Between \\hat{T}(z_0) and \\hat{R}(z_0) 1.4 Quantization of Exponentials 2. The Cross-Wigner Transform 2.1 Definitions of the Cross-Wigner Transform 2.1.1 First definition 2.1.2 Wigner\'s definition 2.1.3 The Gabor transform and its variants 2.1.4 Extension to tempered distributions 2.2 Properties of the Cross-Wigner Transform 2.2.1 Elementary algebraic properties 2.2.2 Analytical properties and continuity 2.2.3 The marginal properties 2.2.4 Translating Wigner transforms 3. The Cross-Ambiguity Function 3.1 Definition of the Cross-Ambiguity Function 3.1.1 Definition using the Heisenberg-Weyl operator 3.1.2 Traditional definition 3.1.3 The Fourier-Wigner transform 3.2 Properties and Relation with the Wigner Transform 3.2.1 Properties of the cross-ambiguity function 3.2.2 Relation with the cross-Wigner transform 3.2.3 The maximum of the ambiguity function 4. Weyl Operators 4.1 The Notion of Weyl Operator 4.1.1 Weyl\'s definition, and rigorous definitions 4.1.2 The distributional kernel of a Weyl operator 4.1.3 Relation with the cross-Wigner transform 4.2 Some Properties of the Weyl Correspondence 4.2.1 The adjoint of a Weyl operator 4.2.2 An L² boundedness result 5. Symplectic Covariance 5.1 Symplectic Covariance Properties 5.1.1 Review of some properties of Mp(n) and Sp(n) 5.1.2 Proof of the symplectic covariance property 5.1.3 Symplectic covariance of Weyl operators 5.2 Maximal Covariance 5.2.1 Antisymplectic matrices 5.2.2 The maximality property 5.2.3 The case of Weyl operators 6. The Moyal Identity 6.1 Precise Statement and Proof 6.1.1 The general Moyal identity 6.1.2 A continuity result 6.2 Reconstruction Formulas 6.2.1. Reconstruction using the cross-Wigner transform 6.2.2. Reconstruction using the cross-ambiguity function 6.3. The Wavepacket Transforms 6.3.1. Definition 6.3.2. Properties of the wavepacket transform Chapter 7. The Feichtinger Algebra 7.1. Definition and First Properties 7.1.1. Definition of S₀(ℝⁿ) 7.1.2. Analytical properties of S₀(ℝⁿ) 7.1.3. The algebra property of S₀(ℝⁿ) 7.2. The Dual Space S\'₀(ℝⁿ) 7.2.1. Description of S\'₀(ℝⁿ) 7.2.2. The Gelfand triple (S₀, L², S\'₀) 8. The Cohen Class 8.1. Definition 8.1.1. The marginal conditions 8.1.2. Generalization of Moyal\'s identity 8.1.3. The operator calculus associated with Q 8.2. Two Examples 8.2.1. The generalized Husimi distribution 8.2.2. The Born-Jordan transform 9. Gaussians and Hermite Functions 9.1. Wigner Transform of Generalized Gaussians 9.1.1. Generalized Gaussian functions 9.1.2. Explicit results 9.1.3. Cross-ambiguity function of a Gaussian 9.1.4. Hudson\'s theorem 9.2. The Case of Hermite Functions 9.2.1. Short review of the Hermite and Laguerre functions 9.2.2. The Wigner transform of Hermite functions 9.2.3. The cross-Wigner transform of Hermite functions 9.2.4. Flandrin\'s conjecture 10. Sub-Gaussian Estimates 10.1. Hardy\'s Uncertainty Principle 10.1.1. The one-dimensional case 10.1.2. Two lemmas 10.1.3. The multidimensional Hardy uncertainty principle 10.2. Sub-Gaussian Estimates for the Wigner Transform 10.2.1. Statement of the result 10.2.2. First proof 10.2.3. Second proof Part II. Applications to Quantum Mechanics 11. Moyal Star Product and Twisted Convolution 11.1. The Moyal Product of Two Symbols 11.1.1. Definition of the Moyal product 11.1.2. Twisted convolution 11.2. Bopp Operators 11.2.1 Bopp shifts 11.2.2. Definition and justification of Bopp operators 11.2.3. The intertwining property 12. Probabilistic Interpretation of the Wigner Transform 12.1. Introduction 12.1.1. Back to Wigner 12.1.2. Averaging observables and symbols 12.2. The Strong Uncertainty Principle 12.2.1. Variances and covariances 12.2.2. The uncertainty principle 12.2.3. The quantum covariance matrix 12.3. The Notion of Weak Value 12.3.1. Definition of weak values 12.3.2. A complex phase space distribution 12.3.3. Reconstruction using weak values 13. Mixed Quantum States and the Density Operator 13.1. Trace Class Operators 13.1.1. Definition and general properties 13.1.2. The case of Weyl operators 13.2. The Density Operator 13.2.1. The Wigner transform of a mixed state 13.2.2. A characterization of density operators 13.2.3. Uncertainty principle for density operators 13.2.4. Covariance matrix 14. The KLM Conditions and the Narcowich-Wigner Spectrum 14.1. The Quantum Bochner Theorem 14.1.1. Bochner\'s theorem 14.1.2. The quantum case: the KLM conditions 14.1.3. The quantum covariance matrix 14.2. The Narcowich-Wigner Spectrum 14.2.1. η-Positive functions 14.2.2. The Narcowich-Wigner spectrum of some states 15. Wigner Transform and Quantum Blobs 15.1. Quantum Blobs and Phase Space 15.1.1. Geometric definition of a quantum blob 15.1.2. Quantum phase space 15.2. Quantum Blobs and the Wigner Transform 15.2.1. The basic example 15.2.2. Covariance ellipsoid and quantum blobs 15.3. From One Quantum Blob to Another 15.3.1. The general case 15.3.2. Averaging over quantum blobs Appendix A. Sp(n) and Mp(n) A.1. The Symplectic Group A.2. The Metaplectic Group A.3. The Inhomogeneous Metaplectic Group Appendix B. The Symplectic Fourier Transform Appendix C. Symplectic Diagonalization C.1. Williamson\'s Theorem C.2. The Block-Diagonal Case C.3. The Symplectic Case C.4. The Symplectic Spectrum Appendix D. Symplectic Capacities D.1. Gromov\'s Non-squeezing Theorem D.2. Symplectic Capacities D.3. Properties D.4. The Symplectic Capacity of an Ellipsoid Bibliography [11] [32] [51) [72] Index A-H Hp-Tr Tw-W