دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [3 ed.]
نویسندگان: Linda Reichl
سری:
ISBN (شابک) : 9783030635343, 3030635341
ناشر: Springer Nature
سال نشر: 2021
تعداد صفحات: [556]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 Mb
در صورت تبدیل فایل کتاب The Transition to Chaos: Conservative Classical and Quantum Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب گذار به آشوب: سیستم های کلاسیک و کوانتومی محافظه کار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب بر اساس دورههایی که در دانشگاههای تگزاس و کالیفرنیا ارائه میشود، به حوزهای از تحقیقات فعال میپردازد که به مبانی فیزیک و شیمی میپردازد. به ساده ترین شکل ممکن مکانیسم های اساسی را ارائه می دهد که تکامل دینامیکی سیستم های کلاسیک و کوانتومی را به طور کلی به اندازه کافی برای گنجاندن پدیده های کوانتومی تعیین می کند. کتاب با بحث در مورد قضیه نوتر، یکپارچگی، نظریه KAM و تعریفی از رفتار آشفته آغاز می شود. با بحث مفصل در مورد نقشههای حفظ منطقه، سیستمهای کوانتومی قابل ادغام، ویژگیهای طیفی، انتگرالهای مسیر و سیستمهای هدایتشده دورهای ادامه میدهد. و با نشان دادن نحوه اعمال ایده ها در سیستم های تصادفی به پایان می رسد. ارائه کامل و مستقل است. ضمیمه ها بسیاری از زمینه های ریاضی مورد نیاز را ارائه می دهند، و ارجاعات گسترده ای به ادبیات فعلی وجود دارد. در حالی که مسائل انتهای فصل ها به دانش آموزان کمک می کند تا درک خود را روشن کنند. این نسخه جدید یک ارائه به روز شده در سراسر، و یک فصل جدید در سیستم های کوانتومی باز دارد.
Based on courses given at the universities of Texas and California, this book treats an active field of research that touches upon the foundations of physics and chemistry. It presents, in as simple a manner as possible, the basic mechanisms that determine the dynamical evolution of both classical and quantum systems in sufficient generality to include quantum phenomena. The book begins with a discussion of Noether's theorem, integrability, KAM theory, and a definition of chaotic behavior; continues with a detailed discussion of area-preserving maps, integrable quantum systems, spectral properties, path integrals, and periodically driven systems; and concludes by showing how to apply the ideas to stochastic systems. The presentation is complete and self-contained; appendices provide much of the needed mathematical background, and there are extensive references to the current literature; while problems at the ends of chapters help students clarify their understanding. This new edition has an updated presentation throughout, and a new chapter on open quantum systems.
Acknowledgements Contents 1 Overview 1.1 Introduction 1.2 Historical Overview 1.3 Plan of the Book References 2 Fundamental Concepts 2.1 Introduction 2.2 Conventional Perturbation Theory 2.3 Integrable Systems 2.3.1 Noether's Theorem 2.3.2 Hidden Symmetries 2.4 Poincaré Surface of Section 2.4.1 Henon-Heiles System 2.4.2 The HOCl Molecule and Birkhoff Coordinates 2.4.3 Lattice Surfaces of Section 2.5 Nonlinear Resonance and Chaos 2.5.1 Single-Resonance Hamiltonians 2.5.1.1 (2,2) Resonance 2.5.1.2 (2,3) Resonance 2.5.2 Two-Resonance Hamiltonian 2.6 KAM Theory 2.6.1 The KAM theorem (for N=2) 2.7 The Definition of Chaos 2.7.1 Lyapounov Exponent 2.7.2 KS Metric Entropy and K-Flows 2.8 Conclusions References 3 Area-Preserving Maps 3.1 Introduction 3.2 Twist Maps 3.2.1 Derivation of a Twist Map from a Torus 3.2.2 Generating Functions 3.2.3 Birkhoff Fixed Point Theorem 3.2.4 The Tangent Map 3.2.5 Homoclinic and Heteroclinic Points 3.3 The Standard Map 3.4 Scaling Behavior of Noble KAM Tori 3.5 Renormalization in Twist Maps 3.5.1 Integrable Twist Map 3.5.2 Nonintegrable Twist Map 3.5.3 The Universal Map 3.6 Bifurcation of M-Cycles 3.6.1 Some General Properties 3.6.2 The Quadratic Map 3.6.3 Scaling in the Quadratic de Vogelaere Map 3.6.3.1 Scaling Behavior of the Bifurcation Sequence 3.7 Cantori 3.8 Renormalization Map 3.8.1 Expression for the Renormalization Map 3.8.2 Fixed Points of the Renormalization Map 3.9 Conclusions References 4 Chaotic Scattering 4.1 Introduction 4.2 The Complete Ternary Horseshoe 4.2.1 Double Gaussian Potential Energy Peaks 4.2.2 Delta-Kicked System 4.2.2.1 Delay Time 4.2.2.2 Symbolic Dynamics 4.2.2.3 Incomplete Ternary Horseshoes 4.3 Scattering Chaos in a Magnetic Dipole 4.4 Model of Chlorine Ion in a Radiation Field 4.4.1 Scattering Map 4.4.2 Delay Time 4.4.3 Symbolic Dynamics 4.5 Chaos in the HOCl Molecular System 4.5.1 Homoclinic Tangles 4.5.2 Scattering Dynamics 4.6 Conclusions References 5 Arnol'd Diffusion 5.1 Introduction 5.2 The Arnol'd Web 5.3 Arnol'd Diffusion and Nekhoroshev Time 5.4 Graphical Evolution of the Arnol'd Web 5.5 Arnol'd Diffusion in an Optical Lattice 5.5.1 Arnol'd Web 5.5.2 Arnol'd Diffusion 5.6 Stability of the Solar System 5.7 Colliding Beam Synchrotron Particle Accelerator 5.8 Conclusions References 6 Quantum Dynamics and Random Matrix Theory 6.1 Introduction 6.2 Invariant Measure for the GOE 6.3 Probability Density that Extremizes Information 6.3.1 Polar Form of Probability Density 6.3.2 Cluster Expansion of the Probability Density 6.4 Eigenvalue Statistics: Gaussian Orthogonal Ensemble 6.4.1 Eigenvalue Number Density 6.4.2 Eigenvalue Two-Body Correlations: 3-Statistic 6.4.3 Eigenvalue Nearest Neighbor Spacing Distribution (GOE) 6.5 Eigenvector Statistics: Gaussian Orthogonal Ensemble 6.6 Thermalization of Quantum Systems 6.7 Conclusions References 7 Bounded Quantum Systems 7.1 Introduction 7.2 Quantum Integrability 7.3 Symmetries and Degeneracy 7.4 The Quantized Baker's Map 7.5 Quantum Billiards 7.5.1 The Stadium Billiard 7.5.2 The Sinai Billiard 7.5.3 The Ripple Billiard 7.6 Peres Test for Quantum Integrability 7.6.1 Theory 7.6.2 The D-Billiard 7.7 Quantum Spin Models 7.7.1 The XY Models with Anisotropy 7.7.2 The XY Model with an Applied Magnetic Field 7.8 Coupled Morse Oscillators 7.9 Signatures of Chaos in a Soft Sinai Lattice 7.10 Conclusions References 8 Manifestations of Chaos in Quantum Scattering Processes 8.1 Introduction 8.2 Random Matrix Theory and Nuclear Scattering Processes 8.3 Scattering Theory 8.3.1 Hamiltonian 8.3.2 Energy Eigenstates 8.3.3 The Reaction Matrix 8.3.4 The Scattering Matrix 8.4 Wigner–Smith and Partial Delay Times 8.4.1 Delay Time of a Wave Packet 8.4.2 Delay Times for Multichannel Scattering 8.4.3 Delay Times and Complex Poles 8.5 Scattering in the Ripple Waveguide 8.5.1 Scattering Resonances in a Ripple Waveguide 8.5.2 Wigner–Smith Delay Times for a Chaotic Scattering System 8.5.2.1 Basis States for the Reaction Region 8.5.2.2 Signatures of Chaos in Waveguide Scattering 8.6 COE and GOE 8.6.1 Circular Orthogonal Ensembles 8.6.2 Lorentzian Orthogonal Ensembles 8.6.3 The Relation Between COE and OE 8.6.3.1 Equivalence of COE and OE When N→∞ 8.6.4 When Does a GOE Hamiltonian Yield a COE S-Matrix? 8.7 Experimental Observation of RMT Predictions 8.7.1 Experimental Nuclear Spectral Statistics 8.7.2 Experimental Molecular Spectral Statistics 8.8 Conclusions References 9 Semiclassical Theory: Path Integrals 9.1 Introduction 9.2 Green's Function and Density of States 9.3 The Path Integral 9.4 Semiclassical Approximation 9.4.1 Method of Stationary Phase 9.4.2 The Semiclassical Green's Function 9.4.3 Conjugate Points 9.5 Energy Green's Function 9.5.1 General Expression 9.5.2 Density of States 9.6 Gutzwiller Trace Formula 9.6.1 Stationary Phase Approximation 9.6.1.1 Monodromy Matrix 9.6.1.2 Response Function: Two Degrees of Freedom 9.7 Anisotropic Kepler System 9.8 Diamagnetic Hydrogen 9.8.1 The Model 9.8.2 Absorption Cross Section 9.8.3 Experiment 9.8.4 Semiclassical Cross Section 9.9 Conclusions References 10 Time-Periodic Quantum Systems 10.1 Introduction 10.2 Floquet Theory 10.2.1 Floquet Matrix 10.2.2 Floquet Hamiltonian 10.3 Quantum Nonlinear Resonances 10.3.1 Two Primary Resonance Model 10.3.2 Floquet Eigenstates 10.3.3 Quantum Resonance Overlap 10.3.4 Floquet Eigenvalue Nearest Neighbor Spacing 10.3.5 Quantum Renormalization 10.4 Dynamics of a Driven Bounded Particle 10.4.1 Driven Particle in Infinite Square Well 10.4.2 Avoided Crossings and High Harmonic Radiation 10.5 Dynamical Tunneling in Atom Optics Experiments 10.5.1 Hamiltonian for Atomic Center-of-Mass 10.5.2 Average Momentum of Cesium Atoms 10.5.3 Floquet Analysis of Tunneling Oscillations 10.6 Quantum Delta-Kicked Rotor 10.6.1 The Schrödinger Equation for the Delta-Kicked Rotor 10.6.2 KAM-Like Behavior of the Quantum Delta-Kicked Rotor 10.6.3 The Floquet Map 10.6.4 Dynamic Anderson Localization 10.7 Microwave-Driven Hydrogen 10.7.1 Experimental Apparatus 10.7.2 One-Dimensional Approximation 10.7.2.1 Nonlinear Resonances 10.8 Arnol'd Diffusion in Quantum Systems 10.8.1 Arnol'd Diffusion in the Driven Optical Lattice 10.8.1.1 Floquet States 10.8.1.2 Behavior of Quantum States 10.9 Quantum Control 10.9.1 The Model (Classical Dynamics) 10.9.2 The Model (Quantum Dynamics) 10.9.3 Floquet States 10.9.4 STIRAP 10.9.5 Avoided Crossings 10.10 Conclusions References A Classical Mechanics Concepts A.1 Newton's Equations A.2 Lagrange's Equations A.3 Hamilton's Equations A.4 The Poisson Bracket A.5 Phase Space Volume Conservation A.6 Action-Angle Coordinates A.7 Hamilton's Principal Function References B Simple Models B.1 The Pendulum B.1.1 Libration—Trapped Orbits (E0g) B.2 Double-Well Potential B.2.1 Below the Barrier—(Eo<0) B.2.2 Above the Barrier—(Eo>0) B.3 Infinite Square-Well Potential B.4 One-Dimensional Hydrogen B.4.1 Zero Stark Field B.4.2 Nonzero Stark Field References C Symmetries and the Hamiltonian Matrix C.1 Space-Time Symmetries C.1.1 Continuous Symmetries C.1.1.1 Time Translation C.1.1.2 Space Translation C.1.1.3 Rotation C.1.2 Discrete Symmetries C.1.2.1 Parity C.1.2.2 Time Reversal C.2 Structure of the Hamiltonian Matrix C.2.1 Space-Time Homogeneity and Isotropy C.2.1.1 Time Translation Invariance C.2.1.2 Space Translation Invariance C.2.1.3 Rotational Invariance C.2.2 Time Reversal Invariance C.2.2.1 Integer Spin C.2.2.2 Half-Integer Spin References D Invariant Measures D.1 General Definition of Invariant Measure D.1.1 Invariant Metric (Length) D.1.2 Invariant Measure (Volume) D.2 Hermitian Matrices D.2.1 Real Symmetric Matrix D.2.1.1 Polar Form of Measure for Real Symmetric Matrix D.2.2 Complex Hermitian Matrices D.2.2.1 Polar Form of Measure for Complex Hermitian Matrix D.2.3 Quaternion Real Matrices D.2.3.1 Polar Form of Invariant Measure for NN Quaternion Real Matrix D.2.4 General Formula for Invariant Measure of Hermitian Matrices D.3 Unitary Matrices D.3.1 Symmetric Unitary Matrices D.3.2 General Unitary Matrices D.3.3 Symplectic Unitary Matrices D.3.4 General Formula for Invariant Measure of Unitary Matrices D.3.5 Orthogonal Matrices D.4 Volume of Invariant Measure for Unitary Matrices References E Quaternions E.1 General Properties of Quaternions E.2 Quaternions in the GOE References F Gaussian Ensembles F.1 Gaussian Orthogonal Ensemble (GOE) F.1.1 Probability Density and Quaternion Matrices for GOE F.1.2 Cluster Functions for GOE F.2 Gaussian Unitary Ensemble (GUE) F.2.1 Complex Hermitian Matrices and Invariant Measure F.2.2 Polar Form of Measure for Complex Hermitian Matrix F.2.3 Probability Density for GUE F.2.4 Cluster Functions for GUE F.2.5 Eigenvalue Number Density for GUE F.2.6 3-Statistics for GUE F.2.7 Eigenvalue Nearest Neighbor Spacing Distribution for GUE (N=2) F.3 Gaussian Symplectic Ensemble (GSE) F.3.1 Quaternion Real Matrices: GSE F.3.2 Polar Form of Invariant Measure for NN Quaternion Real Matrix: GSE F.3.3 Probability Density for GSE F.3.4 Cluster Functions for GSE References G Circular Ensembles G.1 Vandermonde Determinant G.2 Circular Unitary Ensemble (CUE) G.3 Circular Orthogonal Ensemble (COE) G.4 Circular Symplectic Ensemble (COE) G.5 Cluster Functions for Circular Ensembles G.5.1 Circular Unitary Ensemble (CUE) G.5.2 Circular Orthogonal Ensemble (COE) G.5.3 Circular Symplectic Ensemble (CSE) G.6 3-Statistics for Circular Ensembles G.6.1 Circular Unitary Ensemble G.6.2 Circular Orthogonal Ensemble G.6.3 Circular Symplectic Ensemble References H Maxwell's Equations for 2-d Billiards H.1 Transverse Magnetic Modes H.2 Transverse Electric Modes Reference I Moyal Bracket and Wigner Function I.1 The Wigner Function I.2 Ordering of Operators I.3 Moyal Bracket References J Gaussian, S.I., and Atomic Units J.1 Maxwell's Equations in Gaussian Units J.1.1 Physical Quantities Expressed in Gaussian Units J.1.2 Values of Fundamental Constants Expressed in Gaussian Units J.1.3 The Conversion Between Gaussian and SI Units J.1.4 The Conversion Between Gaussian and Atomic Units J.2 Maxwell's Equations in S.I. Units J.2.1 Conversion Between S.I. Units and Atomic Units References K Hydrogen in a Constant Electric Field K.1 The Schrödinger Equation K.1.1 Equation for Relative Motion K.1.2 Solution for λ0=0 K.2 One-Dimensional Hydrogen References Author Index Subject Index