ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب The Timing and Location of Major Ore Deposits in an Evolving Orogen (Geological Society Special Publication, No. 204)

دانلود کتاب زمان و مکان کانسارهای اصلی سنگ معدن در یک کوهزایی در حال تکامل (انتشار ویژه انجمن زمین شناسی، شماره 204)

The Timing and Location of Major Ore Deposits in an Evolving Orogen (Geological Society Special Publication, No. 204)

مشخصات کتاب

The Timing and Location of Major Ore Deposits in an Evolving Orogen (Geological Society Special Publication, No. 204)

دسته بندی: زمين شناسي
ویرایش:  
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 186239122X, 9781423711650 
ناشر:  
سال نشر: 2003 
تعداد صفحات: 369 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 32 مگابایت 

قیمت کتاب (تومان) : 46,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 18


در صورت تبدیل فایل کتاب The Timing and Location of Major Ore Deposits in an Evolving Orogen (Geological Society Special Publication, No. 204) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب زمان و مکان کانسارهای اصلی سنگ معدن در یک کوهزایی در حال تکامل (انتشار ویژه انجمن زمین شناسی، شماره 204) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب زمان و مکان کانسارهای اصلی سنگ معدن در یک کوهزایی در حال تکامل (انتشار ویژه انجمن زمین شناسی، شماره 204)

به عنوان یک نتیجه از برنامه علمی بنیاد علوم اروپا، GEODE، در مورد ژئودینامیک و تکامل کانسار، این کتاب به بررسی فرآیندهای ژئودینامیکی اساسی که منجر به تشکیل ذخایر سنگ معدنی می شود، می پردازد تا کشف کند که چه چیزی زمان و مکان کانسارهای اصلی سنگ معدن را کنترل می کند. یک کوهزایی در حال تکامل مجموعه ای از 19 مقاله تحقیقاتی جنبه های مختلف پیدایش سنگ معدن را در زمینه فرآیندهای ژئودینامیکی که با یک کوهزایی در حال تکامل اتفاق می افتد، بررسی می کند. اگرچه اکثر مقالات مربوط به اروپا است، یافته های آنها اهمیت جهانی برای متالوژنز دارد. این کتاب برای همه کسانی که در تحقیقات یا اکتشافات معدنی مرتبط با متالوژنز درگیر هستند، جالب خواهد بود. علاوه بر این، ذخایر سنگ شواهد جدیدی در مورد مغناطیس مرتبط با تغییرات سریع و گذرا در حرکات صفحه و فرآیندهای فرورانش در محیط‌های تکتونیکی غیرمعمول ارائه می‌دهند و بنابراین برای کسانی که در فرآیندهای ماگمایی و زمین ساختی کوه‌زایی دخیل هستند، جالب است. همچنین در دسترس است: ذخایر معدنی و تکامل زمین (انتشار ویژه انجمن زمین شناسی) (شماره 248) - ISBN 1862391823 عملیات معدنی پایدار در جهان در حال توسعه - انتشار ویژه شماره 250 - ISBN 978-1-86239-18 Geological Society. در سال 1807، انجمن زمین‌شناسی لندن قدیمی‌ترین انجمن زمین‌شناسی در جهان و یکی از بزرگ‌ترین ناشران در علوم زمین است. و از شهرت بین المللی رشک برانگیزی برای کیفیت کار خود برخوردار است. زمینه های بسیاری که در آنها منتشر می کنیم عبارتند از: - زمین شناسی نفت - زمین ساخت، زمین شناسی ساختاری و ژئودینامیک - چینه شناسی، رسوب شناسی و دیرینه شناسی - آتشفشان شناسی، مطالعات ماگمایی و ژئوشیمی - سنجش از دور -تاریخچه زمین شناسی-راهنماهای زمین شناسی منطقه ای


توضیحاتی درمورد کتاب به خارجی

As an outcome of the European Science Foundation scientific programme, GEODE, on geodynamic and ore deposit evolution, this book examines the underlying geodynamic processes that lead to the formation of ore deposits in order to discover what controls the timing and location of major ore deposits in an evolving orogen. A collection of 19 research papers examines various aspects of ore genesis in the context of the geodynamic processes occurring with an evolving orogen. Although the majority of papers relate to Europe, their findings have a global significance for metallogenesis. The book will be of interest to all those involved in research or mineral exploration concerned with metallogenesis. In addition, ore deposits provide new evidence about magnetism associated with transient, rapid changes in plate motions and subduction processes in unusual tectonic settings, and are therefore of interest to those involved in both the magmatic and tectonic processes of orogenesis. Also available: Mineral Deposits & Earth Evolution (Geological Society Special Publication) (No. 248) - ISBN 1862391823 Sustainable Minerals Operations in the Developing World - Special Publication No 250 - ISBN 978-1-86239-188-8 The Geological Society of LondonFounded in 1807, the Geological Society of London is the oldest geological society in the world, and one of the largest publishers in the Earth sciences.The Society publishes a wide range of high-quality peer-reviewed titles for academics and professionals working in the geosciences, and enjoys an enviable international reputation for the quality of its work.The many areas in which we publish in include:-Petroleum geology-Tectonics, structural geology and geodynamics-Stratigraphy, sedimentology and paleontology-Volcanology, magmatic studies and geochemistry-Remote sensing-History of geology-Regional geology guides



فهرست مطالب

Contents......Page 6
Preface......Page 8
The timing and location of major ore deposits in an evolving orogen: the geodynamic context......Page 12
Fig. 1. Main plate tectonic features of the SE Asia–SW Pacific region .........Page 14
Fig. 2. Cartoon cross-section of the Banda Arc–NW Australian shelf collision zone .........Page 15
Fig. 3. Schematic model of are–continent collision, redrawn from Brown & Spadea .........Page 16
Fig. 4. Forward model of plate motions of the SE Asia–SW Pacific .........Page 18
Fig. 5. Mechanism of slab tear proposed by Wortel & Spakman (2000) .........Page 19
Fig. 6. Cartoons based on deep seismic reflection profiles across continental lithosphere .........Page 20
Fig. 7. Coseismic strain model redrawn from Muir-Wood & King (1993). reproduced .........Page 21
Global comparisons of volcanic-hosted massive sulphide districts......Page 24
Fig. 1. Location of major VMS districts, including (in black) districts involved .........Page 25
Fig. 2. Schematic tectonic-volcanic model encompassing the possible relationships between crustal-scale tectonism .........Page 26
Fig. 3. Summary geological map of the Hokuroku VMS district. Modified from .........Page 28
Fig. 4. Summary geological map of the Skellefte VMS district. Modified from .........Page 30
Fig. 5. Summary geological map of the southern Urals VMS district. Modified .........Page 31
Fig. 6. Summary geological map of the Bathurst VMS district. Modified from .........Page 33
Fig. 7. Summary geological map of the Mount Read Volcanic VMS district. .........Page 34
Fig. 8. Summary geological map of the Iberian Pyrite Belt VMS. Modified .........Page 36
Fig. 9. Summary geological map of the Abitibi VMS district. Modified from .........Page 37
Fig. 10. Framework for the integration of component studies of the Global .........Page 44
Table 1. Comparison of tectonic setting and stratigraphy of six Proterozoic and .........Page 38
Table 2. Relationships between the composition of massive sulphide mineralization, host rock .........Page 43
Tectonic controls on magmatic-hydro-thermal gold mineralization in the magmatic arcs of SE Asia......Page 50
Fig. 1. Map of SE Asia, showing tectonic plates (Eurasian, Indian–Australian and .........Page 51
Fig. 2. Gold tonnage versus deposit age, compared with major tectonic events .........Page 53
Fig. 3. Tectonic reconstructions of SE Asia at 24, 15 and 5 .........Page 54
Timing and tectonic controls in the evolving orogen of SE Asia and the western Pacific and some implications for ore generation......Page 60
Fig. 1. Map of SE Asia highlighting major tectonic plates and plate .........Page 61
Fig. 2. Geographical features of the Banda Sea and surrounding regions. Small .........Page 62
Fig. 3. Geographical features of the Molucca Sea and surrounding regions. Small .........Page 63
Fig. 4. Illustration of the different concepts of static and dynamic subduction. .........Page 65
Fig. 5. Plot of MgO (wt%) content versus Zr/Nb for Neogene and .........Page 66
Fig. 6. [sup(206)]Pb/[sup(204)]Pb versus [sup(143)]Nd/[sup(144)]Nd in lavas from the Molucca Sea collision .........Page 67
Fig. 7. (a) Regions and intervals of significant movement of subduction hinges in .........Page 69
Fig. 8. Maps of Indonesia showing the location of radiometric age determinations .........Page 73
Correlating magmatic–hydrothermal ore deposit formation over time with geodynamic processes in SE collision Europe......Page 80
Fig. 1. Post-mid-Cretaceous mineralized volcanicintrusive belts in the Carpathian–Balkan–Aegean region as presented .........Page 81
Fig. 2. Recently published absolute age datasets related to ore districts projected .........Page 82
Fig. 4. The concept of roll-back (Royden 1993)......Page 84
Fig. 5. Schematic representation of the development of a wedge after initiation .........Page 85
Fig. 6. Present-day configuration of Moho depth in the Aegean system (after .........Page 86
Fig. 7. The hypothetical role of orogenic collapse by slab detachment in .........Page 87
Contrasting Late Cretaceous with Neogene ore provinces in the Alpine–Balkan–Carpathian–Dinaride collision belt......Page 92
Fig. 1. Simplified tectonic map displaying the distribution of major tectonic units .........Page 94
Fig. 2. Reconstruction of the Late Cretaceous palaeogeography and geodynamic setting in .........Page 96
Fig. 3. Reconstruction of the Oligocene–Miocene palaeogeography and geodynamic setting in the .........Page 101
Fig. 4. Reconstruction of the Mid–Late Miocene geodynamic setting of the Alps .........Page 102
Fig. 5. Mineralization in the central Eastern Alps related to the exhumation .........Page 103
Fig. 6. Generalized model displaying mineralization associated with post-collisional slab break-off (modified .........Page 107
Table 1. Major Cretaceous and Tertiary mineral resources of the ABCD belt—most .........Page 95
Table 2. Geochronological data from banatite magmatic rocks......Page 100
Auriferous arsenopyrite–pyrite and stibnite mineralization from the Siflitz–Guginock Area (Austria): indications for hydrothermal activity during Tertiary oblique terrane accretion in the Eastern Alps......Page 114
Fig. 1. (a) Tectonic sketch map of the Eastern Alps (modified after Neubauer .........Page 115
Fig. 2. New geological map of the Siflitz–Guginock area, displaying the location .........Page 118
Fig. 3. (a) Native gold and arsenopyrite, pyrite (asp, py) bearing quartz vein .........Page 119
Fig. 4. (a) Geological map of the Guginock area, plan-view projection of the .........Page 120
Fig. 5. Succession of deformation events in the Siflitz–Guginock area, (a) Poles .........Page 121
Fig. 6. Suggested development of Austroalpine crustal blocks between the Tauern Window .........Page 124
Table 1. Chemical and isotopic characteristics of the Guginock Sb mineralization......Page 122
The Elatsite porphyry copper deposit in the Panagyurishte ore district, Srednogorie zone, Bulgaria: U–Pb zircon geochronology and isotope-geochemical investigations of magmatism and ore genesis......Page 130
Fig. 1. (a) Sketch map of Banat–Timok–Srednogorie segment of the 'Tethyan Eurasian Metallogenic .........Page 132
Fig. 2. Compositional spread of dykes in a diagram of SiO[sub(2)] v. .........Page 133
Fig. 3. Spider diagrams normalized to ocean-ridge granite reference (Pearce et al. .........Page 134
Fig. 4. Chondrite-normalized REE patterns of dykes from units 1–5. (a) Data .........Page 136
Table 3. Hf zircon isotope data for porphyry dykes of the Elatsite .........Page 139
Fig. 6. U–Pb concordia diagram of the diorite porphyry rock LF 025; .........Page 140
Table 5. Sm–Nd isotope data for mineral and whole rock samples of .........Page 141
Table 6. Results of Pb–Pb isotope measurements of ore minerals......Page 142
Fig. 9. [sup(206)]Pb/[sup(204)]Pb v. [sup(207)Pb/[sup(204)]Pb v. [sup(208)]Pb/[sup(204)]Pb diagram of ore minerals from .........Page 143
Table 1. Representative geochemical analyses of the dyke units in the area .........Page 135
Table 2. U–Pb zircon isotope data for porphyry dykes of the Elatsite .........Page 138
Ar geochronology of magmatism and hydrothermal activity of the Madjarovo base–precious metal ore district, eastern Rhodopes, Bulgaria......Page 148
Fig. 1. Location of Eocene Madjarovo volcanic complex within the Palaeogene intrusive .........Page 149
Fig. 2. Simplified geological map of the Madjarovo ore district, showing sample .........Page 150
Fig. 3. Age spectra from incremental-heating experiments on sanidine, biotite, K-feldspar, adularia .........Page 154
Fig. 4. Summary of preferred ages based on [sup(40)]Ar/[sup(39)]Ar incremental heating and .........Page 155
Fig. 5. Model for the evolution of Madjarovo volcanic complex, associated alteration .........Page 158
Table 1. Summary of [sup(40)]Ar/[sup(39)]Ar geochronological data for laser fusion and incremental .........Page 153
Multiple generations of extensional detachments in the Rhodope Mountains (northern Greece): evidence of episodic exhumation of high-pressure rocks......Page 162
Fig. 1. Position of the study area within the Mediterranean Alpine Orogen. .........Page 163
Fig. 2. New tectonic subdivision of the Rhodope Domain and location of .........Page 164
Fig. 3. Distribution of granitoid rocks and Tertiary basins in the Rhodope .........Page 167
Fig. 4. P–Texhumation paths of the different tectonic complexes of the Rhodope .........Page 168
Fig. 5. Xanthi detachment fault surface near the town of Xanthi. (a) .........Page 169
Fig. 6. Xanthi-detachment, microfabrics. (a) Outcrop of the Xanthi detachment surface D .........Page 170
Fig. 7. Most important detachment surfaces and major kinematic data of mylonites .........Page 171
Fig. 8. (a) Amphibolites (Upper Sidironero Complex; 5 km NE Xanthi). During decompression .........Page 173
Fig. 9. Detachment surface (D) separating brecciated marbles of the upper plate .........Page 174
Fig. 10. Compositional variations of white K-micas in granodioritic orthogneiss mylonites from .........Page 175
Fig. 11. (a) Quartz feldspar LT-mylonite in the carapace shear zone, a few .........Page 176
Fig. 12. Profiles through the Rhodope domain. Vertical scale is two times .........Page 181
Fig. 13. Sketch illustrating the emplacement of the tectonic complexes in the .........Page 184
Fig. 14. Schematic structural relationships among different tectonic metamorphic complexes and basins, .........Page 185
Table 1. Geochronological data......Page 165
Table 2. Chemical Composition of white K-micas in gneisses and pegmatites from .........Page 172
Table 3. K–Ar data of muscovite and biotite from the eastern Kardamos .........Page 178
The relationship between ore deposits and oblique tectonics: the SW Iberian Variscan Belt......Page 190
Fig. 1. Geological location of the deposits described within the Spanish part .........Page 191
Fig. 3. Interpretative cross section and map of the SW margin of .........Page 192
Fig. 4. Details of some of the mineralization referred to in the .........Page 195
Fig. 5. Synthetical geological sketch of the Aguablanca Stock showing the relationship .........Page 196
Fig. 6. Tectonic setting of the Colmenar (a) and Cala (b) iron-rich .........Page 197
Fig. 7. Geological sketch of a sector of the Benajarafe–Matachel basin showing .........Page 198
Fig. 8. Simplified geology of the central Badajoz–Cordoba Shear Zone showing the .........Page 199
Fig. 9. Probable relationships between transpressional tectonics, volcanism and VHMS-forming processes in .........Page 202
Table 1. Major types of mineralization related to transpressional structures in SW .........Page 204
Permo-Mesozoic multiple fluid flow and ore deposits in Sardinia: a comparison with post-Variscan mineralization of Western Europe......Page 210
Fig. 1. Geological sketch map of SW Sardinia with locations of the .........Page 211
Fig. 2. Synopsis of isotope data of Cambrian-hosted stratabound ores and post-Variscan .........Page 214
Fig. 3. Schematic diagram of homogenization versus last ice-melting temperatures from primary .........Page 215
Fig. 4. Sketch map of important localities for European hydrothermal ore deposits .........Page 217
The timing of W–Sn–rare metals mineral deposit formation in the Western Variscan chain in their orogenic setting: the case of the Limousin area (Massif Central, France)......Page 224
Fig. 1. Regional geological map of the studied area. The main granitic .........Page 225
Fig. 3. Transmitted light microscopic photographs. Moulin-Barret (left) and Puy-les-Vignes (right) .........Page 227
Fig. 4. Geochemical evolution of scheelite against depth in drill holes MBSl .........Page 228
Fig. 5. Interpretative cross-section of the Moulin-Barret area, with position of the .........Page 229
Fig. 6. [sup(40)]Ar/[sup(39)]Ar spectra of several RMG or W deposits: (a) The .........Page 231
Fig. 7. Schematic patterns of fluid circulation (after Cathelineau et al. 1999a. .........Page 235
Fig. 8. Schematic chart, depicting the tectono-magmatic evolution of the northern Limousin .........Page 236
Table 1. Schematic chart of tectonic and magmatic events occurrd during variscan .........Page 226
Table 2. Summary of all dating available from the literature or from this .........Page 230
Discrimination criteria for assigning ore deposits located in the Dinaridic Palaeozoic–Triassic formations to Variscan or Alpidic metallogeny......Page 240
Fig. 1. Geological sketch-map of the central and northwestern Dinarides and the .........Page 241
Fig. 2. The most important ore deposits related to Variscan and Alpidic .........Page 243
Fig. 3. Paragenetic types hosted by Triassic and Palaeozoic rocks.(a) Triassic rocks: .........Page 245
Fig. 4. δ[sup(34)]S values of: (a) Upper Permian evaporites; (b) barites hosted .........Page 247
Fig. 5. Fluid inclusion microthermometry reveals differences between ore fluids related to .........Page 249
Fig. 6. Ternary diagram Ca, Na, K × 10, in mole%, shows an .........Page 254
Example of a structurally controlled copper deposit from the Hercynian western High Atlas (Morocco): the High Seksaoua mining district.......Page 258
Fig. 1. (a) Location of the western High Atlas within the Hercynian domains .........Page 260
Fig. 2. (a) Detailed geological and structural map of the central High Seksaoua .........Page 261
Fig. 3. Lithological succession of the High Seksaoua area. Thicknesses of the .........Page 262
Fig. 5. Macro-structures illustrating the successive tectonic events that affect the study .........Page 263
Fig. 6. Relationships between D[sub(2)] east-verging knee-folds and D[sub(1)] top-to-the-SW shear criteria .........Page 265
Fig. 8. Photographs of the black schist/dolomite level, (a) Outcrop of the .........Page 267
Fig. 9. Photographs of metallogenic features. (a) Massive pyrite mineralization parallel to .........Page 269
Fig. 10. Paragenetic sequences observed within the copper mineralization of the Ifri .........Page 272
Table 1. Results of individual laser analyses made on white micas in .........Page 273
Fig. 12. Correlation diagrams for the white of micas samples M27 (a) .........Page 274
Fig. 13. Characteristics of the Amerdoul copper mineralization. (a) Main outcrops studied .........Page 276
Fig. 14. (a) Schematic block diagram summarizing geometrical relationships between the D[sub(1)]. D[sub(2)] .........Page 277
Fig. 15. (a) General tectonic model and (b) interpretative cross-section showing the role .........Page 279
The Baikalide–Altaid, Transbaikal–Mongolian and North Pacific orogenic collages: similarity and diversity of structural patterns and metallogenic zoning......Page 284
Fig. 1. First-order tectonic units of Eurasia and western North America (modified .........Page 285
Fig. 2. Tectonics of the North Pacific orogenic collage (recompiled using data .........Page 286
Fig. 3. Lithological sequences and metallogeny of the tectonic units of the .........Page 287
Fig. 4. Distribution of porphyry, epithermal, Alaska-type PGM, and orogenic gold deposits .........Page 289
Fig. 5. Tectonics of the Baikalide–Altaid orogenic collage and adjacent cratons. Semi-arrows .........Page 290
Fig. 6. Lithotectonic units and mineralization in the Baikalide–Altaid orogenic collage......Page 295
Fig. 7. Distribution of porphyry, epithermal, VMS, Alaska-type PGM, and orogenic gold .........Page 297
Fig. 8. Geodynamic evolution of the Altaid and North Pacific orogenic collages. .........Page 301
Fig. 9. Global tectonic patterns during backarc spreading in the Altaid (480 .........Page 304
Tectonics, geodynamics and gold mineralization of the eastern margin of the North Asia Craton......Page 310
Fig. 1. Metallogenic zones of the Yana–Indigirka metallogenic belt.Faults (letters in boxes): .........Page 311
Fig. 2. Tectonic sketch-map of the Verkhoyansk–Chersky collisional orogen (orogenic belt)......Page 313
Fig. 3. Geological section through the central part of Verkhoyansk–Chersky collisional orogen. .........Page 314
Fig. 4. Geological sections of the central part of the West Verkhoyansk .........Page 315
Fig. 5. Geodynamic conditions of collision-related gold ore formation in the Verkhoyansk–Chersky .........Page 317
Fig. 6. Schematic geological structure of the Yursky–Brindakit gold ore field......Page 319
Fig. 7. Geological structure of the Yurskoe gold–quartz deposit, Yursky–Brindakit field......Page 320
Fig. 8. Schematic geological structure of the southern Dyandi–Okhonosoi gold–quartz ore field......Page 321
Fig. 9. Schematic geological map of the Kyllakh gold–quartz deposit (modified from .........Page 322
Fig. 10. The structure of ore zones in the Tuora–Tas ore field. .........Page 323
Fig. 11. Schematic geological structure of the Badran gold–quartz deposit......Page 324
Fig. 12. Geology of the Nezhdaninskoe deposit. Modified after Shour (1985)......Page 325
Table 1. Significant gold deposits and occurrences of the Yana–Indigirka metallogenic belt......Page 312
1.05–1.01 Ga Sveconorwegian metamorphism and deformation of the supracrustal sequence at Sæsvatn, South Norway: Re–Os dating of Cu–Mo mineral occurrences......Page 330
Fig. 1. The Sveconorwegian orogen in southern Norway and southwest Sweden. Modified .........Page 332
Fig. 2. Geological map and cross-section of the Sæsvatn supracrustal sequence, underlying .........Page 333
Fig. 3. Rb–Sr whole-rock isochron for the Haukelisæter post-orogenic granite intruding the .........Page 335
Fig. 4. The adits and ores at Langvatn–Kobbernuten. (a) Entrance to one .........Page 336
Fig. 5. Photomicrographs of Langvatn–Kobbernuten ores (mo, molybdenite; cp, chalcopyrite; mag, magnetite; .........Page 337
Fig. 6. Metamorphic–metasomatic model for Cu–Mo mineralization at Langvatn (L) and Kobbernuten .........Page 340
Fig. 7. Binary trace element diagrams in ppm for metabasalt and metagabbro .........Page 341
Table 1. Re–Os data for the Langvatn–Kobbernuten Cu–Mo deposits, Sæsvatn supracrustal sequence, .........Page 339
Fluorine in orthoamphibole dominated Zn–Cu–Pb deposits: examples from Finland and Australia......Page 348
Fig. 1. General geological map of Finland, showing the locations of the .........Page 353
Fig. 3. F contents in rock samples (not as geographical trend) from .........Page 354
Fig. 4. Geological sketch map of the Pyhäsalmi area (after Ekberg & Penttilä 1986)......Page 355
Fig. 6. Positive correlation between F (ppm) and X[sub(Mg)] [= MgO/(MgO + FeO)] .........Page 357
Fig. 8. Immobile oxides TiO[sub(2)] and Al[sub(2)]O3 (wt%) correlate positively (a), suggesting .........Page 358
Fig. 9. Normalized to immobile elements (TiO[sub(2)] in a; A1[sub(2)]O[sub(3)] in b) .........Page 359
Fig. 10. F partitioning between orthoamphiboles (Ath, anthophyllite; Ged, gedrite; Oam, intermediate, .........Page 360
Table 1. Representative whole-rock analyses, including fluorine, from samples of the Orijärvi .........Page 350
Table 2. Representative microprobe analyses and recalculated mineral formulae of amphiboles......Page 351
Table 3. Representative microprobe analyses and recalculated mineral formulae of sheet silicates......Page 352
E......Page 366
M......Page 367
R......Page 368
Z......Page 369




نظرات کاربران