ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب The Thermodynamics of Phase and Reaction Equilibria

دانلود کتاب ترمودینامیک فاز و تعادل واکنش

The Thermodynamics of Phase and Reaction Equilibria

مشخصات کتاب

The Thermodynamics of Phase and Reaction Equilibria

ویرایش: 2 
نویسندگان:   
سری:  
ISBN (شابک) : 012820530X, 9780128205303 
ناشر: Elsevier 
سال نشر: 2021 
تعداد صفحات: 844 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 20 مگابایت 

قیمت کتاب (تومان) : 52,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب The Thermodynamics of Phase and Reaction Equilibria به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب ترمودینامیک فاز و تعادل واکنش نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب ترمودینامیک فاز و تعادل واکنش

ترمودینامیک فاز و تعادل واکنش، ویرایش دوم، پایه ای مناسب برای درک مفاهیم انتزاعی فاز و تعادل واکنش (به عنوان مثال، انرژی مولی جزئی گیبس، فوگاسیته، و فعالیت) ارائه می دهد و نشان می دهد. چگونه می توان این مفاهیم را برای حل مسائل عملی با استفاده از مثال های واضح متعدد به کار برد. نرم افزار محاسباتی موجود این امکان را برای دانش آموزان فراهم کرده است تا با مشکلات واقع بینانه و چالش برانگیز صنعت مقابله کنند. ویرایش دوم شامل مسائل تعادل فازی است که با مخلوط های غیر ایده آل حاوی بیش از دو جزء و مشکلات تعادل واکنش شیمیایی شامل واکنش های متعدد سروکار دارد. محاسبات با کمک Mathcad® انجام می شود.


توضیحاتی درمورد کتاب به خارجی

The Thermodynamics of Phase and Reaction Equilibria, Second Edition, provides a sound foundation for understanding abstract concepts of phase and reaction equilibria (e.g., partial molar Gibbs energy, fugacity, and activity), and shows how to apply these concepts to solve practical problems using numerous clear examples. Available computational software has made it possible for students to tackle realistic and challenging problems from industry. The second edition incorporates phase equilibrium problems dealing with nonideal mixtures containing more than two components and chemical reaction equilibrium problems involving multiple reactions. Computations are carried out with the help of Mathcad®.



فهرست مطالب

Front_cover
Front-Matter
Copyright
Dedication
Contents
Preface
Preface to the first edition
Notation
1 Review of the first and second laws of thermodynamics
	1.1 Definitions
		1.1.1 System
		1.1.2 Property and state
		1.1.3 Steady-state, uniform, and equilibrium
	1.2 Concepts of the ``abstract world'' of thermodynamics
		1.2.1 State and path functions
		1.2.2 Reversible process
		1.2.3 General approach used in the solution of thermodynamics problems
	1.3 Work
	1.4 Paths followed during a process
	1.5 The first law of thermodynamics
		1.5.1 Simplification of the energy balance
			1.5.1.1 Isolated system
			1.5.1.2 Closed system
			1.5.1.3 Steady-state flow system
	1.6 The second law of thermodynamics
		1.6.1 Simplification of the entropy balance
			1.6.1.1 Isolated system
			1.6.1.2 Closed system
			1.6.1.3 Steady-state flow system
	1.7 Equation of state
		1.7.1 Pressure–volume–temperature relations for pure substances
	1.8 Heat capacity
	References
2 Thermodynamic property relations
	2.1 Work functions
	2.2 Fundamental equations
		2.2.1 Maxwell relations
	2.3 Differential changes in internal energy, enthalpy, and entropy
		2.3.1 Differential change in internal energy
		2.3.2 Differential change in enthalpy
		2.3.3 Differential change in entropy
	2.4 Relationship between partial derivatives
		2.4.1 Inverse rule
		2.4.2 Triple product rule
	2.5 Coefficient of thermal expansion and isothermal compressibility
	2.6 Relationship between heat capacities
		2.6.1 Relationship between C̃P and C̃V
			2.6.1.1 Gases
			2.6.1.2 Liquids and solids
		2.6.2 Relationship between C̃V and C̃V* for gases
		2.6.3 Relationship between C̃P and C̃P* for gases
	Problems
	References
3 Pressure–volume–temperature properties of pure substances
	3.1 Compressibility factor
	3.2 Virial equation of state
	3.3 Cubic equations of state
		3.3.1 Isotherms of the cubic equations of state
		3.3.2 Maxwell equal area rule
			3.3.2.1 Solution of Eqs. (3.3-4)–(3.3-6)
		3.3.3 Cubic equations of state in terms of dimensionless parameters
	3.4 Principle of corresponding states
		3.4.1 Lee–Kesler generalized correlation
	3.5 Which equation of state to use?
	Problems
	References
4 Calculations of changes in internal energy, enthalpy, and entropy
	4.1 Liquids and solids
		4.1.1 Change in internal energy
		4.1.2 Change in enthalpy
		4.1.3 Change in entropy
	4.2 Gases
		4.2.1 General expressions for departure functions
			4.2.1.1 Enthalpy departure function
			4.2.1.2 Internal energy departure function
			4.2.1.3 Entropy departure function
		4.2.2 Departure functions for virial equation of state
		4.2.3 Departure functions for cubic equations of state
		4.2.4 Departure functions from the Lee–Kesler generalized correlation
	Problems
5 Equilibrium and phase stability in one-component systems
	5.1 Equilibrium criteria for closed systems
		5.1.1 Condition of maximum entropy
		5.1.2 Condition of minimum internal energy
		5.1.3 Condition of minimum Helmholtz energy
		5.1.4 Condition of minimum Gibbs energy
	5.2 Equilibrium criteria for open systems
	5.3 Phase stability
		5.3.1 Change in Gibbs energy with pressure
		5.3.2 Change in Gibbs energy with temperature
	5.4 Clapeyron equation
		5.4.1 Vapor–liquid equilibrium
			5.4.1.1 Calculation of ΔH̃vap using the cubic equations of state
		5.4.2 Solid–liquid equilibrium
		5.4.3 Solid–vapor equilibrium
	5.5 Gibbs–Helmholtz equation
	Problems
	References
6 Fugacity of a pure component
	6.1 Fugacity and fugacity coefficient
		6.1.1 Alternative expression for fugacity
		6.1.2 Physical significance of fugacity
		6.1.3 Calculation of fugacity
	6.2 Fugacity of a pure gas
		6.2.1 Fugacity from volume-explicit equations of state
		6.2.2 Fugacity from property tables
		6.2.3 Fugacity from the virial equation of state
		6.2.4 Fugacity from the cubic equations of state
		6.2.5 Fugacity from the Lee–Kesler generalized correlation
	6.3 Fugacity of a pure liquid
		6.3.1 Fugacity from the cubic equations of state
	6.4 Fugacity of a pure solid
	6.5 Change in fugacity with temperature and pressure
	Problems
	References
7 Thermodynamics of mixtures
	7.1 Partial molar quantity
		7.1.1 Determination of partial molar quantities
			7.1.1.1 Method of tangent slope
			7.1.1.2 Method of tangent intercepts
		7.1.2 Homogeneous functions and partial molar quantities
	7.2 Property change on mixing
		7.2.1 Determination of the volume change on mixing
		7.2.2 Determination of the heat of mixing
		7.2.3 Correlation of property change on mixing
		7.2.4 Determination of partial molar quantities from Δϕ̃mix
	7.3 The Gibbs–Duhem equation
	Problems
	References
8 Equations of state for mixtures
	8.1 Ideal gas mixture
	8.2 Virial equation of state
	8.3 Cubic equations of state
	8.4 Calculation of ΔU, ΔH, and ΔS using the departure functions
		8.4.1 Virial equation of state
		8.4.2 Cubic equations of state
	8.5 Which equation of state to use?
	Problems
	References
9 Fugacity of a component in a mixture
	9.1 Fundamental equations for a multicomponent mixture
		9.1.1 Equilibrium criteria for a multicomponent system
		9.1.2 The Gibbs phase rule
	9.2 Fugacity of a component in a mixture
	9.3 Ideal mixture
	9.4 Fugacity of a component in a gas mixture
		9.4.1 Fugacity of a component in an ideal gas mixture
		9.4.2 Fugacity of a component in an ideal mixture
		9.4.3 Fugacity from the virial equation of state
		9.4.4 Fugacity from the cubic equations of state
	9.5 Fugacity of a component in a liquid mixture
	9.6 Change in component fugacity with temperature and pressure
	9.7 The use of fugacity in phase equilibrium calculations
		9.7.1 Vapor–liquid equilibrium
		9.7.2 Solid–liquid equilibrium
		9.7.3 Solid–vapor equilibrium
	Problems
	References
10 Excess mixture properties and activity coefficients
	10.1 Property change on mixing for an ideal mixture
	10.2 Excess property
		10.2.1 Relations between excess properties
	10.3 Activity and activity coefficient
		10.3.1 Relationship between activity coefficients and excess properties
		10.3.2 Estimation of excess properties
		10.3.3 Change in activity coefficient with temperature
		10.3.4 Change in activity coefficient with pressure
	10.4 Binary activity coefficient models
		10.4.1 Two-suffix (one-constant) Margules model
		10.4.2 Three-suffix (two-constant) Margules model
		10.4.3 van Laar model
		10.4.4 Wilson model
		10.4.5 NRTL model
		10.4.6 Evaluation of parameters in the Wilson and NRTL models
	10.5 Regular mixture
	10.6 UNIFAC
	10.7 Infinite dilution activity coefficients
	10.8 Testing consistency of experimental data
		10.8.1 Isothermal VLE data
		10.8.2 Isobaric VLE data
		10.8.3 Consistency tests available in the literature
	10.9 Activity coefficients for multicomponent mixtures
		10.9.1 Wilson equation
		10.9.2 NRTL equation
	10.10 Which activity coefficient model to use?
	Problems
	References
11 Vapor–liquid equilibrium
	11.1 Principles of distillation calculations
		11.1.1 Vapor–liquid equilibrium diagrams
			11.1.1.1 Pressure–composition (Pxy) diagram
			11.1.1.2 Temperature–composition (Txy) diagram
			11.1.1.3 x–y diagram
		11.1.2 Types of VLE calculations
	11.2 Raoult's law
	11.3 VLE calculations for ideal mixtures
		11.3.1 Bubble point pressure calculation
		11.3.2 Dew point pressure calculation
		11.3.3 Bubble point temperature calculation
		11.3.4 Dew point temperature calculation
		11.3.5 Isothermal flash calculation
		11.3.6 Graphical techniques for flash calculations
			11.3.6.1 The use of Pxy and Txy diagrams
			11.3.6.2 The use of the x–y diagram
	11.4 VLE calculations for nonideal mixtures
		11.4.1 Bubble point pressure calculation
		11.4.2 Dew point pressure calculation
		11.4.3 Bubble point temperature calculation
		11.4.4 Dew point temperature calculation
		11.4.5 Isothermal flash calculation
	11.5 Azeotrope
		11.5.1 Relative volatility
		11.5.2 Criteria for azeotrope formation
	11.6 VLE calculations using equations of state
		11.6.1 Bubble and dew point (temperature/pressure) calculation
		11.6.2 Isothermal flash calculation
		11.6.3 Estimation of BIPs
	11.7 Gibbs energy minimization
		11.7.1 Minimization techniques
	Problems
	References
12 Solubility of gases in liquids
	12.1 Principles of gas absorption calculations
		12.1.1 Relation between Henry's law and the Lewis–Randall rule
		12.1.2 Relation between Hi and γi∞
		12.1.3 Henry's law and activity coefficients
	12.2 Factors affecting gas solubility
		12.2.1 Effect of pressure
			12.2.1.1 Krichevsky–Kasarnovsky equation
			12.2.1.2 Krichevsky–Ilinskaya equation
		12.2.2 Effect of temperature
		12.2.3 Effect of electrolyte addition
		12.2.4 Temperature and pressure in a gas absorber
	12.3 Applications of Henry's law
		12.3.1 Carbonated beverages
		12.3.2 The bends
		12.3.3 Natural disaster at Lake Nyos
		12.3.4 Knuckle cracking
	Problems
	References
13 Liquid–liquid and vapor–liquid–liquid equilibrium
	13.1 Mathematical preliminaries
	13.2 Stability of liquid mixtures
	13.3 Liquid–liquid equilibrium (LLE) calculations
		13.3.1 LLE flash calculation
		13.3.2 Gibbs energy minimization
		13.3.3 Octanol–water partition coefficient
	13.4 Liquid–liquid extraction
	13.5 Vapor–liquid–liquid equilibrium (VLLE)
		13.5.1 Steam distillation
		13.5.2 VLLE flash calculation
	Problems
	References
14 Solid–liquid equilibrium
	14.1 Pure solid–liquid mixture equilibrium
		14.1.1 Solubility of a solid in a solvent
		14.1.2 Freezing point depression
		14.1.3 Solid–liquid phase diagrams
			14.1.3.1 Systems exhibiting eutectic behavior
			14.1.3.2 Systems forming solid solutions
	14.2 Colligative properties
		14.2.1 Boiling point elevation
		14.2.2 Osmosis
			14.2.2.1 Applications of osmosis
	Problems
	References
15 Chemical reaction equilibrium
	15.1 Stoichiometry of a chemical reaction
	15.2 The law of combining proportions
	15.3 Chemical reaction equilibrium
		15.3.1 Evaluation of the equilibrium constant
		15.3.2 Evaluation of the equilibrium constant - an alternative approach
	15.4 Gas phase reactions
		15.4.1 Calculation of equilibrium composition - an alternative approach
		15.4.2 Variables affecting the extent of reaction
		15.4.3 Exceptions to Le Chatelier's principle
	15.5 Liquid phase reactions
	15.6 Determination of independent reactions
		15.6.1 Determination of the independent reactions from the known species
	15.7 Gibbs energy minimization
	15.8 Heterogeneous reactions
		15.8.1 The Gibbs phase rule for reactive components
		15.8.2 Exceptions to Le Chatelier's principle - revisited
	15.9 Feasibility of a chemical reaction
		15.9.1 Carbon formation
		15.9.2 The inverse problem
	15.10 Simultaneous phase and reaction equilibria
	Problems
	References
16 The conservation equations for chemical reactors
	16.1 Rate of a reaction
	16.2 Species and energy balances for reacting systems
		16.2.1 Conservation of species
		16.2.2 Conservation of energy
	16.3 Batch reactor
		16.3.1 Constant pressure reactor and/or incompressible fluid
		16.3.2 Constant volume reactor
		16.3.3 Solution of first-order ordinary differential equations
	16.4 Continuous stirred tank reactor (CSTR)
		16.4.1 Constant pressure reactor and/or incompressible fluid
		16.4.2 Constant volume reactor
		16.4.3 Steady state operation
		16.4.4 Multiple steady states
	References
Chapter-15---Chemical-reaction-e_2021_The-Thermodynamics-of-Phase-and-Reacti
Chapter-16---The-conservation-equations_2021_The-Thermodynamics-of-Phase-and
Appendix-A A Critical constants and acentric factors
Appendix-A---Critical-constants-and-_2021_The-Thermodynamics-of-Phase-and-Re
Appendix B Molar heat capacities of ideal gases
Appendix-B---Molar-heat-capacities-_2021_The-Thermodynamics-of-Phase-and-Rea
Appendix C Antoine constants
Appendix D Matrix operations using Mathcad
	D.1 Addition and subtraction
	D.2 Multiplication
	D.3 Transpose and inverse of a matrix
	D.4 Operations with column vectors
	D.5 Solution of a system of linear algebraic equations
		D.5.1 Rank of a matrix
	D.6 Reduced row echelon form of a matrix
Appendix E Enthalpy and Gibbs energy of formation at 298.15 K and 1 bar
Appendix F Mathcad subroutines
Appendix G Databanks, simulation programs, books, websites
Appendix H Constants and conversion factors
Index
Back_cover




نظرات کاربران