دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Ismail Tosun
سری:
ISBN (شابک) : 012820530X, 9780128205303
ناشر: Elsevier
سال نشر: 2021
تعداد صفحات: 844
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 20 مگابایت
در صورت تبدیل فایل کتاب The Thermodynamics of Phase and Reaction Equilibria به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ترمودینامیک فاز و تعادل واکنش نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ترمودینامیک فاز و تعادل واکنش، ویرایش دوم، پایه ای مناسب برای درک مفاهیم انتزاعی فاز و تعادل واکنش (به عنوان مثال، انرژی مولی جزئی گیبس، فوگاسیته، و فعالیت) ارائه می دهد و نشان می دهد. چگونه می توان این مفاهیم را برای حل مسائل عملی با استفاده از مثال های واضح متعدد به کار برد. نرم افزار محاسباتی موجود این امکان را برای دانش آموزان فراهم کرده است تا با مشکلات واقع بینانه و چالش برانگیز صنعت مقابله کنند. ویرایش دوم شامل مسائل تعادل فازی است که با مخلوط های غیر ایده آل حاوی بیش از دو جزء و مشکلات تعادل واکنش شیمیایی شامل واکنش های متعدد سروکار دارد. محاسبات با کمک Mathcad® انجام می شود.
The Thermodynamics of Phase and Reaction Equilibria, Second Edition, provides a sound foundation for understanding abstract concepts of phase and reaction equilibria (e.g., partial molar Gibbs energy, fugacity, and activity), and shows how to apply these concepts to solve practical problems using numerous clear examples. Available computational software has made it possible for students to tackle realistic and challenging problems from industry. The second edition incorporates phase equilibrium problems dealing with nonideal mixtures containing more than two components and chemical reaction equilibrium problems involving multiple reactions. Computations are carried out with the help of Mathcad®.
Front_cover Front-Matter Copyright Dedication Contents Preface Preface to the first edition Notation 1 Review of the first and second laws of thermodynamics 1.1 Definitions 1.1.1 System 1.1.2 Property and state 1.1.3 Steady-state, uniform, and equilibrium 1.2 Concepts of the ``abstract world'' of thermodynamics 1.2.1 State and path functions 1.2.2 Reversible process 1.2.3 General approach used in the solution of thermodynamics problems 1.3 Work 1.4 Paths followed during a process 1.5 The first law of thermodynamics 1.5.1 Simplification of the energy balance 1.5.1.1 Isolated system 1.5.1.2 Closed system 1.5.1.3 Steady-state flow system 1.6 The second law of thermodynamics 1.6.1 Simplification of the entropy balance 1.6.1.1 Isolated system 1.6.1.2 Closed system 1.6.1.3 Steady-state flow system 1.7 Equation of state 1.7.1 Pressure–volume–temperature relations for pure substances 1.8 Heat capacity References 2 Thermodynamic property relations 2.1 Work functions 2.2 Fundamental equations 2.2.1 Maxwell relations 2.3 Differential changes in internal energy, enthalpy, and entropy 2.3.1 Differential change in internal energy 2.3.2 Differential change in enthalpy 2.3.3 Differential change in entropy 2.4 Relationship between partial derivatives 2.4.1 Inverse rule 2.4.2 Triple product rule 2.5 Coefficient of thermal expansion and isothermal compressibility 2.6 Relationship between heat capacities 2.6.1 Relationship between C̃P and C̃V 2.6.1.1 Gases 2.6.1.2 Liquids and solids 2.6.2 Relationship between C̃V and C̃V* for gases 2.6.3 Relationship between C̃P and C̃P* for gases Problems References 3 Pressure–volume–temperature properties of pure substances 3.1 Compressibility factor 3.2 Virial equation of state 3.3 Cubic equations of state 3.3.1 Isotherms of the cubic equations of state 3.3.2 Maxwell equal area rule 3.3.2.1 Solution of Eqs. (3.3-4)–(3.3-6) 3.3.3 Cubic equations of state in terms of dimensionless parameters 3.4 Principle of corresponding states 3.4.1 Lee–Kesler generalized correlation 3.5 Which equation of state to use? Problems References 4 Calculations of changes in internal energy, enthalpy, and entropy 4.1 Liquids and solids 4.1.1 Change in internal energy 4.1.2 Change in enthalpy 4.1.3 Change in entropy 4.2 Gases 4.2.1 General expressions for departure functions 4.2.1.1 Enthalpy departure function 4.2.1.2 Internal energy departure function 4.2.1.3 Entropy departure function 4.2.2 Departure functions for virial equation of state 4.2.3 Departure functions for cubic equations of state 4.2.4 Departure functions from the Lee–Kesler generalized correlation Problems 5 Equilibrium and phase stability in one-component systems 5.1 Equilibrium criteria for closed systems 5.1.1 Condition of maximum entropy 5.1.2 Condition of minimum internal energy 5.1.3 Condition of minimum Helmholtz energy 5.1.4 Condition of minimum Gibbs energy 5.2 Equilibrium criteria for open systems 5.3 Phase stability 5.3.1 Change in Gibbs energy with pressure 5.3.2 Change in Gibbs energy with temperature 5.4 Clapeyron equation 5.4.1 Vapor–liquid equilibrium 5.4.1.1 Calculation of ΔH̃vap using the cubic equations of state 5.4.2 Solid–liquid equilibrium 5.4.3 Solid–vapor equilibrium 5.5 Gibbs–Helmholtz equation Problems References 6 Fugacity of a pure component 6.1 Fugacity and fugacity coefficient 6.1.1 Alternative expression for fugacity 6.1.2 Physical significance of fugacity 6.1.3 Calculation of fugacity 6.2 Fugacity of a pure gas 6.2.1 Fugacity from volume-explicit equations of state 6.2.2 Fugacity from property tables 6.2.3 Fugacity from the virial equation of state 6.2.4 Fugacity from the cubic equations of state 6.2.5 Fugacity from the Lee–Kesler generalized correlation 6.3 Fugacity of a pure liquid 6.3.1 Fugacity from the cubic equations of state 6.4 Fugacity of a pure solid 6.5 Change in fugacity with temperature and pressure Problems References 7 Thermodynamics of mixtures 7.1 Partial molar quantity 7.1.1 Determination of partial molar quantities 7.1.1.1 Method of tangent slope 7.1.1.2 Method of tangent intercepts 7.1.2 Homogeneous functions and partial molar quantities 7.2 Property change on mixing 7.2.1 Determination of the volume change on mixing 7.2.2 Determination of the heat of mixing 7.2.3 Correlation of property change on mixing 7.2.4 Determination of partial molar quantities from Δϕ̃mix 7.3 The Gibbs–Duhem equation Problems References 8 Equations of state for mixtures 8.1 Ideal gas mixture 8.2 Virial equation of state 8.3 Cubic equations of state 8.4 Calculation of ΔU, ΔH, and ΔS using the departure functions 8.4.1 Virial equation of state 8.4.2 Cubic equations of state 8.5 Which equation of state to use? Problems References 9 Fugacity of a component in a mixture 9.1 Fundamental equations for a multicomponent mixture 9.1.1 Equilibrium criteria for a multicomponent system 9.1.2 The Gibbs phase rule 9.2 Fugacity of a component in a mixture 9.3 Ideal mixture 9.4 Fugacity of a component in a gas mixture 9.4.1 Fugacity of a component in an ideal gas mixture 9.4.2 Fugacity of a component in an ideal mixture 9.4.3 Fugacity from the virial equation of state 9.4.4 Fugacity from the cubic equations of state 9.5 Fugacity of a component in a liquid mixture 9.6 Change in component fugacity with temperature and pressure 9.7 The use of fugacity in phase equilibrium calculations 9.7.1 Vapor–liquid equilibrium 9.7.2 Solid–liquid equilibrium 9.7.3 Solid–vapor equilibrium Problems References 10 Excess mixture properties and activity coefficients 10.1 Property change on mixing for an ideal mixture 10.2 Excess property 10.2.1 Relations between excess properties 10.3 Activity and activity coefficient 10.3.1 Relationship between activity coefficients and excess properties 10.3.2 Estimation of excess properties 10.3.3 Change in activity coefficient with temperature 10.3.4 Change in activity coefficient with pressure 10.4 Binary activity coefficient models 10.4.1 Two-suffix (one-constant) Margules model 10.4.2 Three-suffix (two-constant) Margules model 10.4.3 van Laar model 10.4.4 Wilson model 10.4.5 NRTL model 10.4.6 Evaluation of parameters in the Wilson and NRTL models 10.5 Regular mixture 10.6 UNIFAC 10.7 Infinite dilution activity coefficients 10.8 Testing consistency of experimental data 10.8.1 Isothermal VLE data 10.8.2 Isobaric VLE data 10.8.3 Consistency tests available in the literature 10.9 Activity coefficients for multicomponent mixtures 10.9.1 Wilson equation 10.9.2 NRTL equation 10.10 Which activity coefficient model to use? Problems References 11 Vapor–liquid equilibrium 11.1 Principles of distillation calculations 11.1.1 Vapor–liquid equilibrium diagrams 11.1.1.1 Pressure–composition (Pxy) diagram 11.1.1.2 Temperature–composition (Txy) diagram 11.1.1.3 x–y diagram 11.1.2 Types of VLE calculations 11.2 Raoult's law 11.3 VLE calculations for ideal mixtures 11.3.1 Bubble point pressure calculation 11.3.2 Dew point pressure calculation 11.3.3 Bubble point temperature calculation 11.3.4 Dew point temperature calculation 11.3.5 Isothermal flash calculation 11.3.6 Graphical techniques for flash calculations 11.3.6.1 The use of Pxy and Txy diagrams 11.3.6.2 The use of the x–y diagram 11.4 VLE calculations for nonideal mixtures 11.4.1 Bubble point pressure calculation 11.4.2 Dew point pressure calculation 11.4.3 Bubble point temperature calculation 11.4.4 Dew point temperature calculation 11.4.5 Isothermal flash calculation 11.5 Azeotrope 11.5.1 Relative volatility 11.5.2 Criteria for azeotrope formation 11.6 VLE calculations using equations of state 11.6.1 Bubble and dew point (temperature/pressure) calculation 11.6.2 Isothermal flash calculation 11.6.3 Estimation of BIPs 11.7 Gibbs energy minimization 11.7.1 Minimization techniques Problems References 12 Solubility of gases in liquids 12.1 Principles of gas absorption calculations 12.1.1 Relation between Henry's law and the Lewis–Randall rule 12.1.2 Relation between Hi and γi∞ 12.1.3 Henry's law and activity coefficients 12.2 Factors affecting gas solubility 12.2.1 Effect of pressure 12.2.1.1 Krichevsky–Kasarnovsky equation 12.2.1.2 Krichevsky–Ilinskaya equation 12.2.2 Effect of temperature 12.2.3 Effect of electrolyte addition 12.2.4 Temperature and pressure in a gas absorber 12.3 Applications of Henry's law 12.3.1 Carbonated beverages 12.3.2 The bends 12.3.3 Natural disaster at Lake Nyos 12.3.4 Knuckle cracking Problems References 13 Liquid–liquid and vapor–liquid–liquid equilibrium 13.1 Mathematical preliminaries 13.2 Stability of liquid mixtures 13.3 Liquid–liquid equilibrium (LLE) calculations 13.3.1 LLE flash calculation 13.3.2 Gibbs energy minimization 13.3.3 Octanol–water partition coefficient 13.4 Liquid–liquid extraction 13.5 Vapor–liquid–liquid equilibrium (VLLE) 13.5.1 Steam distillation 13.5.2 VLLE flash calculation Problems References 14 Solid–liquid equilibrium 14.1 Pure solid–liquid mixture equilibrium 14.1.1 Solubility of a solid in a solvent 14.1.2 Freezing point depression 14.1.3 Solid–liquid phase diagrams 14.1.3.1 Systems exhibiting eutectic behavior 14.1.3.2 Systems forming solid solutions 14.2 Colligative properties 14.2.1 Boiling point elevation 14.2.2 Osmosis 14.2.2.1 Applications of osmosis Problems References 15 Chemical reaction equilibrium 15.1 Stoichiometry of a chemical reaction 15.2 The law of combining proportions 15.3 Chemical reaction equilibrium 15.3.1 Evaluation of the equilibrium constant 15.3.2 Evaluation of the equilibrium constant - an alternative approach 15.4 Gas phase reactions 15.4.1 Calculation of equilibrium composition - an alternative approach 15.4.2 Variables affecting the extent of reaction 15.4.3 Exceptions to Le Chatelier's principle 15.5 Liquid phase reactions 15.6 Determination of independent reactions 15.6.1 Determination of the independent reactions from the known species 15.7 Gibbs energy minimization 15.8 Heterogeneous reactions 15.8.1 The Gibbs phase rule for reactive components 15.8.2 Exceptions to Le Chatelier's principle - revisited 15.9 Feasibility of a chemical reaction 15.9.1 Carbon formation 15.9.2 The inverse problem 15.10 Simultaneous phase and reaction equilibria Problems References 16 The conservation equations for chemical reactors 16.1 Rate of a reaction 16.2 Species and energy balances for reacting systems 16.2.1 Conservation of species 16.2.2 Conservation of energy 16.3 Batch reactor 16.3.1 Constant pressure reactor and/or incompressible fluid 16.3.2 Constant volume reactor 16.3.3 Solution of first-order ordinary differential equations 16.4 Continuous stirred tank reactor (CSTR) 16.4.1 Constant pressure reactor and/or incompressible fluid 16.4.2 Constant volume reactor 16.4.3 Steady state operation 16.4.4 Multiple steady states References Chapter-15---Chemical-reaction-e_2021_The-Thermodynamics-of-Phase-and-Reacti Chapter-16---The-conservation-equations_2021_The-Thermodynamics-of-Phase-and Appendix-A A Critical constants and acentric factors Appendix-A---Critical-constants-and-_2021_The-Thermodynamics-of-Phase-and-Re Appendix B Molar heat capacities of ideal gases Appendix-B---Molar-heat-capacities-_2021_The-Thermodynamics-of-Phase-and-Rea Appendix C Antoine constants Appendix D Matrix operations using Mathcad D.1 Addition and subtraction D.2 Multiplication D.3 Transpose and inverse of a matrix D.4 Operations with column vectors D.5 Solution of a system of linear algebraic equations D.5.1 Rank of a matrix D.6 Reduced row echelon form of a matrix Appendix E Enthalpy and Gibbs energy of formation at 298.15 K and 1 bar Appendix F Mathcad subroutines Appendix G Databanks, simulation programs, books, websites Appendix H Constants and conversion factors Index Back_cover