دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Norbert Schwarzer
سری:
ISBN (شابک) : 9814774472, 9789814774475
ناشر: Pan Stanford
سال نشر: 2019
تعداد صفحات: 150
[216]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 18 Mb
در صورت تبدیل فایل کتاب The Theory of Everything: Quantum and Relativity is everywhere – A Fermat Universe به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه همه چیز: کوانتوم و نسبیت در همه جا وجود دارد - یک جهان فرما نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب نظریه کوانتومی و نظریه نسبیت عام را یکی می کند. به عنوان یک مشکل حل نشده برای حدود 100 سال و تحت تأثیر قرار دادن بسیاری از زمینه ها، این احتمالاً برای جامعه علمی اهمیت دارد. نمونه هایی مانند میدان هیگز، محدود به موارد کلاسیک دیراک و کلاین-گوردون یا شرودینگر، اشیاء کوانتیزه شده شوارتزشیلد، کر، کر-نیومن و فوتون برای مثال در نظر گرفته می شوند. توضیح جالبی برای عدم تقارن ماده و پادماده در کیهان اولیه هنگام کوانتیزه کردن متریک شوارتزشیلد یافت شد.
The book unifies quantum theory and the general theory of relativity. As an unsolved problem for about 100 years and influencing so many fields, this is probably of some importance to the scientific community. Examples like Higgs field, limit to classical Dirac and Klein–Gordon or Schrödinger cases, quantized Schwarzschild, Kerr, Kerr–Newman objects, and the photon are considered for illustration. An interesting explanation for the asymmetry of matter and antimatter in the early universe was found while quantizing the Schwarzschild metric.
Cover Half Title Title Page Copyright Page Dedication Table of Contents About Motivation and Luck 1: Brief Introduction The Stamler Approach: A Brief Historical Overview of the Original Idea 2: Theory The Generalized Metric Dirac Operator Scalar Product in Laplace–Beltrami Form Example: Schwarzschild Metric Transition to the Metric Schrödinger or Covariant Schrödinger Equation Further Considerations Example: The Classical Dirac Equation in the Minkowski Space-Time and Its Extension to Arbitrary Coordinates The Connection to the Einstein Field Equations Summing Up the Recipe: The Forward Derivation Summing Up the Recipe: The Backward Derivation Example: The Higgs Field Example: Eigenvalue Solutions for Simple Fields with K( fm) = F(fm)* fm = p*m fm 3: The 1D Quantum Oscillator in the Metric Picture The Classical Harmonic Quantum Oscillator within the Metric Picture or the Theory of Everything Gaussian-Like Metric Approach Cos-Like Metric Approach Question of Quantizing the Solution The Level Underneath Conclusions to the “Einstein Oscillator” 4: The Quantized Schwarzschild Metric The Quantization of Time in the Vicinity of a Schwarzschild Object The Quantization of Mass for a Schwarzschild Object The Level Underneath (see also [16] or Section “The 1D Quantum Oscillator in the Metric Picture”) Investigations in Connection with the Speed of Light within the Level Underneath Discussion with Respect to rs(nr)/t(nt) = clevel2 Discussion with Respect to rend(nr, nt)/t(nr, nt) = clevel2 How to Evaluate the Speed of Light of the Level Underneath? Conclusions to Quantized Schwarzschild 5: Matter–Antimatter Asymmetry Application to Dirac–Schwarzschild Particles at Rest 6: Generalization of “The Recipe”: From ħ to the Planck Tensor Generalization to Non-diagonal Metrics Generalization of the “Clever Zero” The Generalized “Vectorial Dirac Root” Examples for Other “Vectorial Dirac Roots” Simple Square Root with Shear Component with (X) = X2 Simple Square Root with Shear Component with (X) = X2 with Virtual Parameters Ei of Various Orders of “Virtuality” Simple Cubic Root Ξ (X) = X3 Simple Cubic Root Ξ (X) = X3 with Virtual Parameter c Simple Quartic Root Ξ (X) = X4 Simple Quartic Root Ξ (X) = X4 with Virtual Parameter c Extension/Generalization to Arbitrary Functional Approaches for K(fn) The Planck functional Extension/Generalization to Arbitrary Derivative Approaches: The Generalized Gradient of fn Extension/Generalization to Higher-Order Planck Tensors Summing Up the Generalized Recipe: The Forward Derivation Summing Up the Generalized Recipe: The Backward Derivation Backward Example: The Higgs Field Revisited (Extended Consideration from [15]) Forward Example: The Harmonic Oscillator and Eigenvalue Solutions for Simple Fields with K(fm) = F(fm)* fm = p*m fm Revisited (Extended Consideration from [10]) Conclusions to “Generalization of the Recipe” 7: About Fermat’s Last Theorem Introduction Motivation Why is That? Fermat’s Own Proof? 8: Dirac Quantization of the Kerr Metric The Generalized Metric Dirac Operator for a Kerr Object “at Rest” Further Results and Trials The Spatial Appearance of the Leptons Conclusions to the Quantized Schwarzschild and Kerr Objects 9: The Photon The Photon Metric Connections with Maxwell The Other Way to Fulfill the Maxwell Equations with Plane Waves Illustrations Spatial Extension of the Solution and the Localized Photon Localizing the Photon Forces It to Evolve Spin Option A: Leading to Magnetic Charges Option B: Leading to Magnetic Displacement Current Density Option C: Finding the Correct Metric, a Yet Unsolved Problem Suspicion about Connections to Compactified Coordinates The Alternative Interpretation Using Real and Imaginary Part Further Illustrations and a Few Words about the Absence of Magnetic Monopoles in Our Observable Universe The Total Spatial Displacement for the Photon Conclusions to the Photon 10: How the Quantum Theory Already Resides in the Einstein–Hilbert Action Theory: The Discarded Term The One-Dimensional Case The Harmonic Quantum Oscillator in 1D in the Metric Picture The Three-Dimensional Case Connection with the Technique of the “Intelligent Zero” of a Line Element Theory: The Conjecture δRαß = Matter & Energy and the Extended-Einstein Field Equations Most Symmetric and Isotropic Virtual Matter Solutions in 2D, 3D, and 4D Four Most Simple Solutions for the Whole Thing in 4D: The Matter and Antimatter Asymmetry and Why Time is Different The Two-Dimensional Case Intermediate Result: The n-Dimensional Case Antimatter and Spin An Adapted Schwarzschild Solution Eigenequations Derived from δRαß for Shear-Free Metrics In Four Dimensions In Three Dimensions In Two Dimensions Summing Up This Section Separation Approaches The 2D Case The 3D Case The 4D Case Summing the Last Section Up Example: Symmetry of Revolution References Index