دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: David Friedrich Woerner
سری:
ISBN (شابک) : 2022051673, 9781119811374
ناشر: John Wiley & Sons
سال نشر: 2023
تعداد صفحات: [333]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 22 Mb
در صورت تبدیل فایل کتاب The Technology of Discovery. Radioisotope Thermoelectric Generators and Thermoelectric Technologies for Space Exploration به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فناوری کشف. ژنراتورهای ترموالکتریک رادیوایزوتوپ و فناوری های ترموالکتریک برای اکتشاف فضا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright Page Contents Foreward Note From the Series Editor Preface Authors Reviewers Acknowledgments Glossary List of Acronyms and Abbreviations Chapter 1 The History of the Invention of Radioisotope Thermoelectric Generators (RTGs) for Space Exploration References Chapter 2 The History of the United States’s Flight and Terrestrial RTGs 2.1 Flight RTGs 2.1.1 SNAP Flight Program 2.1.1.1 SNAP-3 2.1.1.2 SNAP-9 2.1.1.3 SNAP-19 2.1.1.4 SNAP-27 2.1.2 Transit-RTG 2.1.3 Multi-Hundred-Watt RTG 2.1.4 General Purpose Heat Source RTG 2.1.4.1 General Purpose Heat Source 2.1.4.2 GPHS-RTG System 2.1.5 Multi-Mission Radioisotope Thermoelectric Generator 2.1.6 US Flight RTGs 2.2 Unflown Flight RTGs 2.2.1.1 SNAP-1 2.2.1.2 SNAP-11 2.2.1.3 SNAP-13 2.2.1.4 SNAP-17 2.2.1.5 SNAP-29 2.2.1.6 Selenide Isotope Generator 2.2.1.7 Modular Isotopic Thermoelectric Generator 2.2.1.8 Modular RTG 2.3 Terrestrial RTGs 2.3.1 SNAP Terrestrial RTGs 2.3.1.1 SNAP-7 2.3.1.2 SNAP-15 2.3.1.3 SNAP-21 2.3.1.4 SNAP-23 2.3.2 Sentinel 25 and 100 Systems 2.3.3 Sentry 2.3.4 URIPS-P1 2.3.5 RG-1 2.3.6 BUP-500 2.3.7 Millibatt-1000 2.4 Conclusion References Chapter 3 US Space Flights Enabled by RTGs 3.1 SNAP-3B Missions (1961) 3.1.1 Transit 4A and Transit 4B 3.2 SNAP-9A Missions (1963–1964) 3.2.1 Transit 5BN-1, 5BN-2, and 5BN-3 3.3 SNAP-19 Missions (1968–1975) 3.3.1 Nimbus-B and Nimbus III 3.3.2 Pioneer 10 and 11 3.3.3 Viking 1 and 2 Landers 3.4 SNAP-27 Missions (1969–1972) 3.4.1 Apollo 12–17 3.5 Transit-RTG Mission (1972) 3.5.1 TRIAD 3.6 MHW-RTG Missions (1976–1977) 3.6.1 Lincoln Experimental Satellites 8 and 9 3.6.2 Voyager 1 and 2 3.7 GPHS-RTG Missions (1989–2006) 3.7.1 Galileo 3.7.2 Ulysses 3.7.3 Cassini 3.7.4 New Horizons 3.8 MMRTG Missions: (2011-Present (2021)) 3.8.1 Curiosity 3.8.2 Perseverance 3.8.3 Dragonfly–Scheduled Future Mission 3.9 Discussion of Flight Frequency 3.10 Summary of US Missions Enabled by RTGs References Chapter 4 Nuclear Systems Used for Space Exploration by Other Countries 4.1 Soviet Union 4.2 China References Chapter 5 Nuclear Physics, Radioisotope Fuels, and Protective Components 5.1 Introduction 5.2 Introduction to Nuclear Physics 5.2.1 The Atom 5.2.2 Radioactivity and Decay 5.2.3 Emission of Radiation 5.2.3.1 Alpha Decay 5.2.3.2 Beta Decay 5.2.3.3 Photon Emission 5.2.3.4 Neutron Emission 5.2.3.5 Decay Chains 5.2.4 Interactions of Radiation with Matter 5.2.4.1 Charged Particle Interactions with Matter 5.2.4.2 Neutral Particle Interactions with Matter 5.2.4.3 Biological Interactions of Radiation with Matter 5.3 Historic Radioisotope Fuels 5.3.1 Polonium-210 5.3.2 Cerium-144 5.3.3 Strontium-90 5.3.4 Curium-242 5.3.5 Curium-244 5.3.6 Cesium-137 5.3.7 Promethium-147 5.3.8 Thallium-204 5.4 Producing Modern PuO2 5.4.1 Cermet Target Design, Fabrication, and Irradiation 5.4.2 Improved Target Design 5.4.3 Post-Irradiation Chemical Processing 5.4.4 Waste Management 5.4.5 Conversion to Production Mode of Operation 5.5 Fuel, Cladding, and Encapsulations for Modern Spaceflight RTGs 5.5.1 Evolution of Radioisotope Heat Source Protection 5.5.2 General Purpose Heat Source 5.5.3 Fine Weave Pierced Fabric (FWPF) 5.5.4 Carbon-Bonded Carbon Fiber (CBCF) 5.5.5 Heat Transfer Considerations 5.5.6 Cladding 5.6 Summary References Chapter 6 A Primer on the Underlying Physics in Thermoelectrics 6.1 Underlying Physics in Thermoelectric Materials 6.1.1 Reciprocal Lattice and Brillouin Zone 6.1.2 Electronic Band Structure 6.1.3 Lattice Vibration and Phonons 6.2 Thermoelectric Theories and Limitations 6.2.1 Best Thermoelectric Materials 6.2.2 Imbalanced Thermoelectric Legs 6.3 Thermal Conductivity and Phonon Scattering 6.3.1 Highlights of SiGe References Chapter 7 End-to-End Assembly and Pre-flight Operations for RTGs 7.1 GPHS Assembly 7.2 RTG Fueling and Testing 7.3 RTG Delivery, Spacecraft Checkout, and RTG Integration for Flight References Chapter 8 Lifetime Performance of Spaceborne RTGs 8.1 Introduction 8.2 History of RTG Performance at a Glance 8.3 RTG Performance by Generator Type 8.3.1 SNAP-3B 8.3.2 SNAP-9A 8.3.3 SNAP-19B 8.3.4 SNAP-27 8.3.5 Transit-RTG 8.3.6 SNAP-19 8.3.7 Multi-Hundred Watt RTG 8.3.8 General Purpose Heat Source RTG 8.3.9 Multi-Mission RTG References Chapter 9 Modern Analysis Tools and Techniques for RTGs 9.1 Analytical Tools for Evaluating Performance Degradation and Extrapolating Future Power 9.1.1 Integrated Rate Law Equation 9.1.2 Multiple Degradation Mechanisms 9.1.3 Solving for k′ and x 9.1.4 Integrated Rate Equation 9.1.5 Analysis of Residuals 9.1.6 Rate Law Equations: RTGs versus Chemistry versus Math 9.1.6.1 Application to RTG Performance 9.2 Effects of Thermal Inventory on Lifetime Performance 9.2.1 Analysis of GPHS-RTG 9.2.2 Analysis of MMRTG 9.3 (Design) Life Performance Prediction 9.3.1 RTG’s degradation mechanisms 9.3.2 Physics-based RTG Life Performance Prediction 9.4 Radioisotope Power System Dose Estimation Tool (RPS-DET) 9.4.1 Motivation 9.4.2 RPS-DET Software Components 9.4.3 RPS-DET Geometries 9.4.4 RPS-DET Source Terms and Radiation Transport 9.4.5 Simulation Results 9.4.6 Validation and Verification 9.4.7 Conclusion References Chapter 10 Advanced US RTG Technologies in Development 10.1 Introduction 10.1.1 Background 10.2 Skutterudite-based Thermoelectric Converter Technology for a Potential MMRTG Retrofit 10.2.1 Introduction 10.2.2 Thermoelectric Couple and 48-Couple Module Design and Fabrication 10.2.3 Performance Testing of Couples and 48-Couple Module 10.2.4 Generator Life Performance Prediction 10.3 Next Generation RTG Technology Evolution 10.3.1 Introduction 10.3.2 Challenges to Reestablishing a Production Capability 10.3.2.1 Design Trades 10.3.2.2 Silicon Germanium Unicouple Production 10.3.2.3 Converter Assembly 10.3.3 Opportunities for Enhancements 10.4 Considerations for Emerging Commercial RTG Concepts 10.4.1 Introduction 10.4.2 Challenges for Commercial Space RTGs 10.4.2.1 Radioisotopes 10.4.2.2 Specific Power 10.4.2.3 Launch Approval 10.4.3 Launch Safety Analyses and Testing 10.4.3.1 Modeling Approaches 10.4.3.2 Safety Testing 10.4.3.3 Leveraging Legacy Design Concepts References Index EULA