دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: پزشکی ویرایش: 1 نویسندگان: Allan I. Basbaum, M. Catherine Bushnell, David V, Smith, Gary K. Beauchamp, Stuart J Firestein, Pete سری: ISBN (شابک) : 9780126394825, 0126394822 ناشر: سال نشر: 2007 تعداد صفحات: 4504 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 149 مگابایت
کلمات کلیدی مربوط به کتاب حسها: مرجع جامع ، مجموعه شش جلدی ، جلد 1-6: رشته های پزشکی، فیزیولوژی انسانی
در صورت تبدیل فایل کتاب The Senses: A Comprehensive Reference, Six-Volume Set, Volume 1-6 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حسها: مرجع جامع ، مجموعه شش جلدی ، جلد 1-6 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تحت هدایت یک تیم برجسته از کارشناسان بین المللی، 6 جلد، 300
مقاله از همه دانشمندان برتر را جمع آوری کرد که دانش فعلی ما را
در مورد آناتومی، فیزیولوژی و زیست شناسی مولکولی اندام های حسی
ارائه می کرد. موضوعات تحت پوشش شامل ادراک، روان فیزیک، و پردازش
مرتبه بالاتر اطلاعات حسی، و همچنین اختلالات و روش های جدید
تشخیصی و درمانی است.
این اثر مرجع که برای طیف وسیعی از مخاطبان نوشته شده است،
دانشجویان، دانش پژوهان، پزشکان، و هر علاقه مندی را ارائه می
دهد. در علوم اعصاب مروری جامع از دانش انباشته شده در مورد
عملکرد اندام های حسی، سیستم های حسی و نحوه پردازش ورودی های حسی
توسط مغز. دانشمندان برجسته از سرتاسر جهان مقالاتی را ارائه
کردند و The Senses را به یک پرتره واقعا بین المللی از فیزیولوژی
حسی تبدیل کردند. این مجموعه مرجع قطعی علوم اعصاب حسی در بازار
است و نقطه ورود نهایی به بررسی و ادبیات اصلی در علوم اعصاب حسی
را فراهم می کند و مکانی طبیعی برای دانش آموزان و دانشمندان
علاقه مند برای تعمیق دانش خود خواهد بود.
Under the guidance of a distinguished team of international
experts, 6 volumes collected 300 articles from all the top
scientists laying out our current knowledge on the anatomy,
physiology, and molecular biology of sensory organs. Topics
covered include the perception, psychophysics, and higher order
processing of sensory information, as well as disorders and new
diagnostic and treatment methods.
Written for a wide audience, this reference work provides
students, scholars, medical doctors, and anyone interested in
neuroscience a comprehensive overview of the knowledge
accumulated on the function of sense organs, sensory systems,
and how the brain processes sensory input. Leading scholars
from around the world contributed articles, making The Senses a
truly international portrait of sensory physiology. The set is
the definitive reference on sensory neuroscience on the market,
and will provide the ultimate entry point into the review and
original literature in Sensory Neuroscience, and be a natural
place for interested students and scientists to deepen their
knowledge.
Cover Page......Page 1<br>Title Page......Page 3<br>ISBN 0126394822......Page 5<br>EDITORIAL ADVISORY BOARD......Page 6<br>Volume Editors......Page 7<br>Volume 2 Vision II......Page 10<br>Volume 3 Audition......Page 11<br>Volume 4 Olfaction & Taste......Page 12<br>Volume 5 Pain......Page 13<br>Volume 6 Somatosensation......Page 14<br>Contents......Page 8<br>Contents......Page 651<br>Contents......Page 1024<br>Contents......Page 1941<br>Contents......Page 2836<br>Contents......Page 3859<br>Contributors to All Volumes......Page 15<br>Volume 1 - Vision I ......Page 4<br>Introduction to Volumes 1 and 2......Page 34<br>Conceptual Foundations......Page 36<br>The Compression of Information......Page 37<br>Seeing Objects in Space......Page 38<br>The Experimental Problem: Efficient Specification of Stimulus Variables......Page 40<br>Information Theory and Prior Probability......Page 41<br>Introduction......Page 44<br>General Constraints......Page 45<br>Optical Constraints......Page 46<br>Lenses: Multiple Protein Types and Gene Sharing......Page 47<br>Capturing Photons: The Opsin/Retinal Solution......Page 48<br>Developmental Evidence about Eye Evolution......Page 50<br>Developmental Evidence about Eye Evolution......Page 51<br>Functional Evidence about Eye Evolution......Page 53<br>Other Solutions to Capturing Photons......Page 54<br>How Did Eyes Evolve?......Page 55<br>References......Page 56<br>Further Reading......Page 57<br>Introduction......Page 60<br>Size and Information Capacity......Page 61<br>The Ambient Light Environment and Light Adaptation......Page 62<br>Describing and Comparing Optical Structure of Avian Eyes......Page 63<br>Eye size......Page 64<br>Amphibious habits and optical design......Page 65<br>The Kiwi: Regressive Evolution of a Bird Eye......Page 66<br>Describing Visual Fields......Page 67<br>Difficulties in estimating visual fields and binocular overlap......Page 69<br>Type 1 fields......Page 70<br>The Function of Binocularity......Page 71<br>Binocularity and optic flow fields......Page 75<br>Binocular vision and nocturnality......Page 76<br>Photopigments and Photoreceptors......Page 77<br>Oil Droplets......Page 78<br>Variation in oil droplet pigmentation......Page 79<br>Variation of Receptor Spectral Sensitivities and Densities......Page 80<br>Double Cones and Avian Luminance......Page 81<br>Single Cones and Tetrachromacy......Page 82<br>References......Page 83<br>Further Reading......Page 87<br>Vision in Fish......Page 88<br>Evolutionary Origin of Visual Pigments......Page 89<br>Lamprey......Page 90<br>Holosteans......Page 91<br>Lungfish and Coelacanth......Page 92<br>Multiple Opsins......Page 93<br>Rh2 (Middle-Wave Green-Sensitive) Opsin Duplication......Page 94<br>SWS2 (Short-Wave Blue/Violet-Sensitive) Opsin Duplication......Page 98<br>SWS1 (Short-Wave Violet/Ultraviolet-Sensitive) Opsin Duplication......Page 99<br>LWS (Long- to Middle-Wave Red/Green-Sensitive) Opsin Duplication......Page 101<br>Complex Opsin Expression/Cellular Trajectories......Page 102<br>Short-Wavelength Shifts: Salmonids and the Lingcod......Page 103<br>Long-Wavelength Shifts: Yellowfin Tuna......Page 104<br>Adaptive Significance......Page 105<br>References......Page 108<br>Phototransduction in Microvillar Photoreceptors of Drosophila and Other Invertebrates......Page 112<br>Glossary......Page 113<br>Photoreceptor and Retinal Morphology......Page 115<br>Voltage-Clamped Light-Induced Current......Page 117<br>Potassium Channels......Page 120<br>Electroretinogram......Page 121<br>Strategies for Gene Discovery......Page 122<br>Rhodopsin......Page 123<br>Chromophore......Page 125<br>Invertebrate rhodopsins are bistable......Page 126<br>Arrestins terminate active metarhodopsin......Page 127<br>Rhodopsin kinase and phosphatase......Page 128<br>Arrestin phosphorylation......Page 129<br>Heterotrimeric G Protein......Page 130<br>G protein beta and gamma subunits......Page 131<br>Phospholipase C (NORPA)......Page 132<br>Measuring phospholipase C activity......Page 133<br>Light-Sensitive Channels trp and trpl......Page 134<br>Structure of TRP and TRPL......Page 135<br>Channel properties......Page 136<br>trp and trpl phenotypes......Page 137<br>Scaffolding Protein INAD......Page 138<br>Evidence for Activation by Lipid Messengers......Page 139<br>PIP2 Depletion......Page 141<br>Ca2+-Dependent Feedback and Mechanisms of Adaptation......Page 143<br>Ca2+ signals are dominated by Ca2+ influx......Page 144<br>Ca2+ buffers and homeostasis......Page 145<br>Ca2+-Dependent Negative Feedback......Page 146<br>Calmodulin......Page 148<br>Phosphoinositide Metabolism......Page 149<br>rdgB and Phosphatidylinositol Kinases......Page 150<br>Compartmentalization and Local Signaling......Page 151<br>Fast Nonlinear Response Kinetics......Page 152<br>Refractory Period......Page 153<br>Adaptation......Page 154<br>Limulus......Page 155<br>Mollusks......Page 156<br>Conclusion......Page 157<br>References......Page 158<br>Relevant Websites......Page 165<br>Central Processing of Visual Information in Insects......Page 166<br>The Closed Loop of Action and Perception......Page 167<br>Visually Induced Reflexes and Voluntary Movements: Inner-Loop and Outer-Loop Control......Page 168<br>General Organization......Page 170<br>Lamina......Page 171<br>Lobula Complex......Page 172<br>Functional Anatomical Pathways......Page 173<br>Self-motion and optic flow......Page 174<br>How does the visual system analyze directional motion?......Page 177<br>Flies as model systems for directional motion processing......Page 178<br>Lobula plate tangential cells and the processing of directional motion......Page 179<br>HS and VS cells analyze self-motion-induced optic flow......Page 181<br>Monocular and binocular integration of motion information......Page 183<br>Synaptic transmission: the VS-V1 synapse......Page 184<br>Lobula plate tangential cell network interactions......Page 185<br>Robustness of encoding self-motion parameters......Page 186<br>Gain control and motion adaptation......Page 187<br>Dendritic gain control......Page 188<br>Local adaptation phenomena......Page 189<br>Quantitative behavioral studies and electrophysiological replay experiments......Page 190<br>Open questions......Page 193<br>Chasing female flies......Page 194<br>Catching prey on the fly - aerial predators’ visual hunting strategies......Page 197<br>Discriminating small objects from the background......Page 200<br>Distance control in hovering hawkmoths......Page 202<br>Detecting looming objects in locusts......Page 204<br>Image Segmentation - The Detection of Orientated Contours......Page 208<br>Visual pigments, photoreceptors, and filters......Page 210<br>When does an animal have color vision?......Page 211<br>Neural mechanisms for color coding......Page 212<br>Adaptations to e-vector detection in the eye......Page 214<br>Two theoretical models of e-vector detection......Page 215<br>Neuronal mechanisms......Page 216<br>The Functional Role of the Ocelli......Page 217<br>Two Visual Mechanisms - One Motion Parameter......Page 218<br>Multisensory contributions to inner-loop control......Page 219<br>Multisensory contributions to outer-loop control......Page 222<br>The Relationship between Sensory Systems and Motor Systems: Strategies of Sensorimotor Transformation......Page 223<br>Data Supporting Cognitive Functions......Page 224<br>Conclusions......Page 226<br>References......Page 227<br>Further Reading......Page 237<br>What Is Color Vision?......Page 240<br>Spectral Sensitivities of Invertebrate Photoreceptors......Page 241<br>Color Vision in the Darkness......Page 242<br>Separation of Chromatic and Achromatic Vision......Page 243<br>References......Page 244<br>Visual Ecology......Page 246<br>Introduction to Visual Ecology......Page 247<br>Intensity and Duration of Light......Page 248<br>Spectral Properties of Natural Light......Page 249<br>Polarized Light in Nature......Page 250<br>The Biological Visual Environment......Page 251<br>Visual Optics......Page 252<br>Receptor Arrays and Retinas......Page 254<br>Visual Sensitivity (Brightness Adaptation)......Page 256<br>Spectral Sensitivity, Color Vision, and Ultraviolet Vision......Page 257<br>Polarization Vision......Page 263<br>Eye Movements......Page 266<br>Orientation......Page 267<br>Predation and Its Avoidance......Page 268<br>Visual Signaling......Page 270<br>References......Page 274<br>Photoreceptor Structure......Page 282<br>Protein Structure......Page 283<br>Genetic Structure......Page 284<br>Rod and Cone Specializations......Page 286<br>Spectral Tuning of Photopigments......Page 287<br>Nonrod, Noncone Opsins......Page 289<br>Evolution of Mammalian Photopigments......Page 290<br>Photopigment Expression......Page 291<br>The Mammalian Theme: Two Types of Cone Pigment......Page 292<br>Evolutionary Loss of Mammalian S-Cone Pigments......Page 293<br>Primate Cone Pigments and Color Vision......Page 294<br>Red-green color-vision defects......Page 296<br>Blue cone monochromacy......Page 297<br>Tritan color-vision defects......Page 298<br>References......Page 299<br>Relevant Website......Page 303<br>Glossary......Page 304<br>Morphology of Rods and Cones......Page 305<br>Light Response of Rods and Cones......Page 306<br>Intensity-Response Relation......Page 308<br>Kinetics of the Dim-Flash Response......Page 311<br>The a-Wave of the Electroretinogram......Page 312<br>Single-Photon Response......Page 313<br>Pigment Noise......Page 315<br>The cGMP-Gated, Light-Suppressible, Nonselective Cation Channel......Page 316<br>Phototransduction Cascade......Page 319<br>Background-Light Adaptation......Page 324<br>Bleaching Adaptation......Page 325<br>Differences between Rods and Cones......Page 326<br>Diseases......Page 327<br>Parietal-Eye Photoreceptor in Lizards and a Possible Evolutionary Linkage to Rods and Cones......Page 329<br>References......Page 330<br>Relevant Website......Page 336<br>Introduction......Page 338<br>Additional Rod Pathways......Page 343<br>How Could This Particular Synaptic Disposition Be Evolved?......Page 344<br>Inherited Photoreceptor Degeneration: How Photoreceptor Death Affects the Architecture of the Rod and Cone Pathways......Page 345<br>Further Reading......Page 346<br>Introduction......Page 348<br>The Presynaptic Complex......Page 349<br>Feedback from Horizontal Cells......Page 351<br>Morphological Types of Bipolar Cells......Page 352<br>Midget Bipolar Cells of the Primate Retina......Page 353<br>Blue-Cone Bipolar Cells......Page 355<br>Cone Contacts of Bipolar Cells......Page 356<br>Glutamate Receptor Subunits......Page 357<br>ON-Bipolar Cell Glutamate Receptors......Page 358<br>OFF-Bipolar Cell Glutamate Receptors......Page 359<br>Temporal Transfer Characteristics......Page 360<br>Spatial Transfer Characteristics......Page 362<br>Synaptic Contacts of Bipolar Cells in the Inner Plexiform Layer......Page 363<br>alpha-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptor Subunits......Page 365<br>Metabotropic Glutamate Receptors......Page 366<br>Co-Stratification of Pre- and Postsynaptic Partners in the Inner Plexiform Layer......Page 367<br>References......Page 368<br>Morphology in Cat and Rabbit......Page 376<br>Synaptic Inputs......Page 377<br>Receptive Field......Page 378<br>Ephaptic Feedback......Page 379<br>A Spatiotemporal Bandpass Filter......Page 380<br>Contribution of Neuron Types......Page 381<br>References......Page 382<br>Relevant Website......Page 384<br>Introduction......Page 386<br>Random Properties of Bipolar Array......Page 387<br>Adaptive Properties of Bipolar Array......Page 389<br>Counter-Phased Grating Reveals Nonlinear Subunits......Page 390<br>Temporal Frequency Response of Bipolar Cells......Page 391<br>Contribution to Linear Responses......Page 392<br>References......Page 393<br>Neurochemical Diversity......Page 396<br>Feedback and Feedforward Inhibition......Page 398<br>Local Processing in Amacrine Cells......Page 399<br>References......Page 401<br>Further Reading......Page 402<br>The P, M and K Streams of the Primate Visual System: What Do They Do for Vision?......Page 404<br>Numbers, density, and resolution......Page 405<br>Connectivity: inputs and projections......Page 406<br>Linearity of spatial summation; X-Y......Page 407<br>Contrast gain......Page 408<br>Summary: The Properties of the Three Neuronal Streams......Page 409<br>Challenges to the Parallel Streams Hypothesis......Page 410<br>Anatomy......Page 411<br>The Need for Alternative Theories......Page 412<br>References......Page 413<br>Glossary......Page 418<br>Luminance and Contrast......Page 419<br>Optimal Basis Sets for Representing Natural Images......Page 420<br>More Complex Spatial Properties......Page 421<br>Temporal Statistics of Natural Images......Page 423<br>References......Page 424<br>Behavior......Page 428<br>Statistical Variations in Photon Absorption......Page 429<br>Behavioral Estimates of Absolute Sensitivity and Dark Noise......Page 430<br>Limitations to Behavioral Experiments......Page 431<br>Amplification......Page 432<br>Dark Noise......Page 434<br>Reproducibility......Page 435<br>Retinal Readout of the Rod Signals......Page 438<br>Sparseness, Convergence, and Nonlinear Processing......Page 439<br>Extraction......Page 442<br>Representation......Page 443<br>Summary......Page 445<br>References......Page 446<br>Direction-Selective Ganglion Cells......Page 448<br>Starburst Amacrine Cells......Page 450<br>Direction-Selective excitation......Page 452<br>Computations Based on Network Interactions......Page 453<br>The Role of Direction-Selective Signals Originating in the Retina......Page 454<br>References......Page 455<br>Discovery of Melanopsin......Page 458<br>Identification of Intrinsically Photosensitive Retinal Ganglion Cells......Page 459<br>Functional Characterization of Intrinsically Photosensitive Retinal Ganglion Cells......Page 461<br>Role of Intrinsically Photosensitive Retinal Ganglion Cells in Vision......Page 462<br>Melanopsin-Activated Phototransduction......Page 463<br>References......Page 464<br>Early Studies......Page 468<br>Anatomical Substrate......Page 469<br>Current Views of Cell Physiology......Page 470<br>Conclusions......Page 471<br>References......Page 472<br>Relevant Website......Page 473<br>Glossary......Page 474<br>Local Patterning in the Distribution of Retinal Nerve Cell Types......Page 475<br>Nearest neighbor analysis......Page 476<br>Voronoi-based analyses......Page 478<br>Autocorrelation analysis and the density recovery profile......Page 479<br>Packing factor analysis......Page 480<br>Functional Implications of Regular Retinal Mosaics......Page 481<br>Dendritic tiling and contact inhibition......Page 483<br>Regulating dendritic overlap by homotypic interactions......Page 486<br>Dendritic Coverage and Connectivity......Page 487<br>References......Page 488<br>Gap Junctions......Page 492<br>Clinical Relevance......Page 493<br>Cone-to-cone coupling......Page 494<br>Rod-to-cone coupling......Page 495<br>Horizontal Cells......Page 496<br>A-type horizontal cells and Cx50......Page 497<br>B-type horizontal cells......Page 498<br>AII Amacrine Cells/ON Cone Bipolar Cells, a Complex Heterocellular Network......Page 499<br>AII/ON cone bipolar gap junctions......Page 500<br>Physiology......Page 501<br>Alpha ganglion cells......Page 502<br>Synchronized firing......Page 503<br>References......Page 504<br>Glossary......Page 508<br>Dark rearing retards developmental segregation of ON and OFF pathways in retinal ganglion cells......Page 510<br>Molecular or genetic mechanisms mediating this activity-dependent developmental plasticity remain elusive......Page 513<br>Light deprivation alters the normal developmental sequence of excitatory and inhibitory synaptic inputs to retinal ganglion cells......Page 514<br>Visual experience controls development of serotonergic amacrine cells in chick retina......Page 516<br>Ambient Background Light Regulates Horizontal Cell Synapses and Gap Junction Coupling between Horizontal Cells......Page 517<br>Light and Dark Conditions Modify the Morphology of Bipolar Cell Axons......Page 518<br>Light and Dark Controls Gap Junction Coupling and Receptive Field Properties of Amacrine Cells......Page 519<br>Light and Dark Adaptation Controls Receptive Field Organization of Retinal Ganglion Cells......Page 520<br>Rewiring of Synaptic Connections in Outer Retina in Response to Photoreceptor Degeneration or Loss of Synaptic Signaling......Page 521<br>References......Page 522<br>Relevant Website......Page 525<br>Introduction......Page 526<br>Ganglion Cell Types......Page 527<br>Morphological Classification......Page 528<br>A Survey of Some Conserved Ganglion Cell Types......Page 529<br>Melanopsin-Expressing Retinal Ganglion Cells......Page 530<br>ON Direction-Selective Cells......Page 532<br>Local Edge Detectors......Page 534<br>ON-OFF Direction-Selective Cells......Page 536<br>Alpha Cells......Page 537<br>Beta Cells......Page 540<br>Methods for Linking Retinofugal Projections to Retinal Ganglion Cell Types......Page 541<br>Lateral Geniculate Complex and Dorsal Thalamus......Page 542<br>Superior Colliculus......Page 544<br>Pretectal Region......Page 546<br>Hypothalamic Region......Page 547<br>References......Page 548<br>Further Reading......Page 554<br>Advantages of a Mobile Pupil......Page 556<br>Overview of the Pathways Controlling Pupil Diameter......Page 557<br>Iris Musculature......Page 559<br>Afferent Pathway......Page 560<br>Pretectal olivary nucleus......Page 561<br>Sympathetic Influences on the Pupillary Light Reflex......Page 563<br>Afferent Influences on the Pupillary Near Response......Page 564<br>Additional Cortical Influences on Pupillary Responses......Page 565<br>Influence of Alertness on Pupillary Behavior......Page 566<br>Ascending Neuromodulatory Systems......Page 567<br>Dysfunctions in the Light Reflex Pathway......Page 568<br>References......Page 569<br>Further Reading......Page 571<br>The Hypothalamic Suprachiasmatic Nucleus......Page 572<br>Molecular Components of the Suprachiasmatic Nucleus Circadian Oscillator......Page 573<br>Suprachiasmatic Nucleus Neurons Express a Circadian Rhythm in Neural Activity......Page 575<br>A Retinohypothalamic Tract Innervates the Suprachiasmatic Nucleus......Page 576<br>Photic Entrainment of the Suprachiasmatic Nucleus......Page 577<br>Parametric entrainment......Page 578<br>Entrainment in nature......Page 579<br>Entrainment Confers Clock-Like Properties to the Suprachiasmatic Nucleus......Page 580<br>Serotonergic Modulation of Photic Input to the Suprachiasmatic Nucleus......Page 581<br>5-HT1B Receptor-Mediated Inhibition of Retinohypothalamic Tract Input to the Suprachiasmatic Nucleus......Page 582<br>Anatomical Organization of the Suprachiasmatic Nucleus......Page 583<br>Afferent and Efferent Connections......Page 584<br>Summary......Page 585<br>References......Page 586<br>Introduction......Page 592<br>Properties of T-Type Ca2+ Channels......Page 593<br>Properties of Burst and Tonic Firing......Page 595<br>Circuit Properties......Page 596<br>Functional Features......Page 597<br>The cat lateral geniculate nucleus......Page 599<br>Lateral geniculate nucleus......Page 600<br>Drivers and Modulators......Page 601<br>Layer 5 Corticothalamic Inputs as Drivers......Page 604<br>Role of Higher-Order Thalamic Relays in Corticocortical Processing......Page 606<br>Overview......Page 607<br>Conclusions......Page 608<br>References......Page 609<br>Further Reading......Page 610<br>Glossary......Page 612<br>Functional Organization of Area V1: Anatomical Modules and Functional Maps......Page 613<br>Hue Maps......Page 615<br>Interrelationships Among V1 Functional Maps......Page 617<br>Color, Hue, and Luminance-Change Maps......Page 618<br>Contour Maps......Page 619<br>V4 Modular Cortical Connections......Page 620<br>MT Single-Unit Mapping......Page 623<br>Inferotemporal Areas......Page 624<br>Inferotemporal Functional Modules......Page 625<br>References......Page 626<br>Further Reading......Page 628<br>Occipital Visual Areas......Page 630<br>Primary Visual Cortex......Page 631<br>V4/V8......Page 633<br>V5 (Human MT+)......Page 634<br>V3A/V3B......Page 635<br>Ventral Stream Areas......Page 636<br>Lateral Occipital Complex......Page 637<br>Fusiform Face Area......Page 638<br>Dorsal Stream Areas......Page 639<br>Parieto-Occipital Cortex/V6......Page 640<br>Superior Parietal Lobule and Inferior Parietal Lobule......Page 641<br>References......Page 642<br>Volume 2 - Vision II ......Page 650<br>Temporal Coherence: A Versatile Code for the Definition of Relations......Page 653<br>Synchrony as Tag of Relatedness......Page 654<br>The Role of Oscillations in Adjusting Spike Timing......Page 655<br>Feature Specific Binding by Gamma Phase-Dependent Spike Timing in Primary Visual Cortex......Page 656<br>Mechanisms of Read-Out......Page 657<br>Synchrony and Feature Binding......Page 658<br>Preattentive versus Attention-Dependent Grouping......Page 659<br>Further Reading......Page 660<br>Object Vision Pathway......Page 663<br>Effects of Inferior Temporal Damage on Object Recognition......Page 665<br>Stimulus Selectivity of Neurons in the Inferior Temporal Cortex......Page 668<br>Invariance Properties of Inferior Temporal Neurons (Invariance With Respect to Position, Orientation and Size)......Page 670<br>Columnar Organization of the Inferior Temporal Cortex......Page 671<br>Plasticity of the Stimulus Selectivity of Neurons in the Inferior Temporal Cortex......Page 672<br>Coding Schemes for Object Representation......Page 674<br>Future Perspectives and Concluding Remarks......Page 676<br>References......Page 677<br>Glossary......Page 681<br>Why are Luminance and Contrast Sensitivities Important?......Page 682<br>Spatiotemporal Selectivity: The Two-Scales Design......Page 683<br>Contrast......Page 684<br>Single units......Page 685<br>Functional magnetic resonance imaging......Page 686<br>Lateral geniculate nucleus......Page 687<br>Contrast adaptation in parallel visual streams......Page 688<br>Contrast......Page 689<br>Cellular basis of the temporal contrast sensitivity function......Page 690<br>Some Clinical Implications......Page 691<br>References......Page 692<br>Relevant Website......Page 695<br>Influence of Contrast on Perceived Brightness and Lightness......Page 697<br>Neural Mechanisms of Brightness/Lightness Perception......Page 699<br>Perceptual Filling-In......Page 700<br>Neural Mechanisms of Filling-In......Page 701<br>References......Page 703<br>Further Reading......Page 704<br>Glossary......Page 705<br>Introduction......Page 706<br>Light Intensity......Page 707<br>Light Spectrum......Page 708<br>Sources of Visual Noise......Page 709<br>A Trade-Off between Resolution and Sensitivity......Page 710<br>The Eyes of Arthropods and Vertebrates......Page 711<br>Vision and Visual Behavior in Nocturnal Arthropods......Page 712<br>Spider camera eyes......Page 713<br>Insect compound eyes......Page 715<br>Signal transduction in nocturnal arthropod photoreceptors......Page 716<br>Spatial and temporal summation......Page 717<br>Visual Behavior in Nocturnal Arthropods......Page 719<br>Nocturnal navigation and homing......Page 720<br>Nocturnal color vision......Page 722<br>Vision and Visual Behavior in Nocturnal Birds and Primates......Page 723<br>Optical Adaptations for Increased Sensitivity......Page 724<br>Neural Adaptations for Increased Sensitivity......Page 726<br>Vision versus other senses at night......Page 729<br>Visual performance in dim light......Page 730<br>Visually guided prey capture, locomotion, and navigation......Page 732<br>References......Page 734<br>Glossary......Page 739<br>Univariance and Trichromacy......Page 740<br>Color Matching Functions......Page 741<br>Dichromacy and Monochromacy......Page 742<br>Historical Overview......Page 743<br>From Cone Spectral Sensitivities to Color Matching Functions......Page 744<br>Rod Spectral Sensitivity Measurements......Page 745<br>Photopic Luminous Efficiency......Page 746<br>Other Factors that Influence Spectral Sensitivity......Page 747<br>Macular Pigment......Page 748<br>References......Page 749<br>Relevant Website......Page 752<br>Glossary......Page 753<br>Introduction......Page 754<br>Psychophysical Color Mechanisms......Page 755<br>Cardinal Mechanisms......Page 757<br>R and G Mechanisms......Page 758<br>B and Y Mechanisms......Page 760<br>I and D Mechanisms......Page 762<br>Higher-Order Mechanisms......Page 763<br>References......Page 766<br>The Color Signal and Spectral Sampling......Page 771<br>Related Colors......Page 772<br>Illuminant and Viewing Media......Page 774<br>Relational Color Constancy......Page 775<br>Sensory and Perceptual Cues......Page 776<br>Spatial Ratios of Cone Excitations......Page 777<br>Achromatic Adjustment......Page 778<br>Role of Task and Stimulus......Page 779<br>Processing in Retina and Lateral Geniculate Nucleus......Page 780<br>Inherited Color-Vision Deficiency......Page 781<br>References......Page 782<br>Introduction......Page 785<br>Implementations......Page 786<br>Research on Motion......Page 787<br>The Reichardt Detector......Page 788<br>Reverse-Phi......Page 789<br>Pattern dependence......Page 790<br>Facilitation and suppression......Page 791<br>Reverse-phi......Page 792<br>Shunting inhibition......Page 793<br>The Motion Energy Model......Page 795<br>Physiological Evidence......Page 796<br>Input from the lateral geniculate nucleus......Page 797<br>Linear summation......Page 799<br>Motion opponency......Page 800<br>Space-Time Gradients......Page 801<br>Physiological Evidence......Page 802<br>Conclusion......Page 803<br>References......Page 804<br>Introduction......Page 809<br>Simple Cells and Linear Motion Mechanisms......Page 810<br>Nonlinear Motion Mechanisms......Page 812<br>Complex Cells and Motion Energy......Page 813<br>Circuitry Underlying Local Motion Processing......Page 814<br>The Spatial Scale of Local Motion Operations......Page 815<br>Extrastriate Local Motion Processing......Page 816<br>Anatomy and Connections......Page 817<br>Physiological Properties and Functional Organization......Page 818<br>Motion Integration: The Aperture Problem......Page 819<br>The Problem with Integration: Segmentation Is Needed Too......Page 821<br>The Effect of Contrast......Page 822<br>Relating MT to Perception......Page 823<br>Adaptation......Page 824<br>Attention and Memory......Page 825<br>Human MT......Page 826<br>What Is Optic Flow?......Page 827<br>Area Medial Superior Temporal......Page 828<br>Extraretinal Inputs......Page 829<br>Other Areas with Optic Flow Responses......Page 831<br>Higher Motion Areas in Cat Visual Cortex......Page 832<br>References......Page 833<br>Glossary......Page 841<br>Motion Noise......Page 844<br>The Aperture Problem......Page 845<br>Receptive Fields for Measuring Motion......Page 846<br>A Note on Terminology......Page 847<br>Tiling: The Simplest Model......Page 848<br>Tiling and Motion Noise......Page 849<br>Plaids......Page 850<br>Plaid Physiology......Page 851<br>Integrationist Models......Page 852<br>The Intersection of Constraints, or Fourier-Plane, Model......Page 854<br>Challenges to Integrationist Models......Page 856<br>Intersection of Constraints, Vector Average, or Feature Tracking?......Page 857<br>Bar-Field Physiology......Page 858<br>Physiological Evidence for Early 2D Motion Signals......Page 860<br>Theoretical Considerations: Redundancy Reduction......Page 863<br>Selectionist Models......Page 864<br>Future Challenges......Page 865<br>Final Thoughts......Page 866<br>References......Page 867<br>Relevant Websites......Page 870<br>Glossary......Page 871<br>Translational Component......Page 872<br>Combined Translation and Rotation......Page 873<br>Perception of Translational Heading......Page 874<br>Retinal Flow Theories......Page 875<br>Simulated Rotation......Page 876<br>The Path of Self-Motion......Page 877<br>The Optic Flow Illusion......Page 878<br>Neural Level......Page 879<br>References......Page 880<br>Glossary......Page 883<br>References......Page 888<br>The Computation of Transparency......Page 891<br>Anchoring Perceived Transmittance......Page 894<br>Scission and the Perception of Lightness......Page 895<br>References......Page 896<br>Glossary......Page 897<br>Orders of Depth......Page 899<br>Human Perception of Three-Dimensional Shape......Page 901<br>Monkey Perception of Three-Dimensional Structure......Page 902<br>Area MT/V5......Page 903<br>Beyond MT/V5......Page 904<br>Human MT/V5+......Page 905<br>V3A and parietal regions......Page 908<br>MT/V5 and satellites......Page 909<br>Other cortical regions......Page 911<br>Higher-order disparity selectivity in TEs, part of the inferotemporal complex......Page 914<br>Exquisite coding of three-dimensional shape from disparity by TEs neurons......Page 917<br>The invariance of three-dimensional shape selectivity in TEs......Page 918<br>Selectivity of caudal intraparietal neurons for first-order disparity......Page 919<br>Single-Cell Studies......Page 920<br>Conclusions......Page 921<br>References......Page 922<br>Relevant Websites......Page 926<br>The Binding Problem and Limits on Object Recognition......Page 927<br>Real Time Methods......Page 928<br>Feature Guidance......Page 929<br>Biased Competition......Page 930<br>Terminating Unsuccessful Searches......Page 931<br>References......Page 932<br>Glossary......Page 933<br>Surface-Based Attentional Selection......Page 934<br>Neural Basis of Surface-Based Attention......Page 936<br>Neural Basis of Competitive Interactions......Page 937<br>Neural Integration of Competition......Page 938<br>Neural Control Signals (Bias Inducers)......Page 939<br>References......Page 940<br>Introduction: Active Vision - Saccadic Eye Movements and Visual Perception......Page 943<br>Visual Representations and the Guidance of Saccadic Eye Movements......Page 944<br>Psychophysical Links between Covert Spatial Attention and Saccade Preparation......Page 945<br>Attention Deficits Following Brain Damage......Page 946<br>Driving Attention......Page 947<br>References......Page 948<br>Stimulus and Task-Related Factors in Early Vision......Page 951<br>Behavioral Salience in Higher-Order Attention-Related Areas......Page 953<br>Further Reading......Page 954<br>Glossary......Page 955<br>Introduction......Page 956<br>Time Course of Perceptual Learning......Page 958<br>Specificity of Perceptual Learning......Page 959<br>Perceptual Learning and Contextual Interaction......Page 960<br>Perceptual Learning and Top-Down Influences......Page 962<br>Implications from Psychophysical Studies......Page 963<br>Changes in Early Sensory Cortex Associated with Perceptual Learning......Page 964<br>Changes in cortical maps associated with discrimination training......Page 965<br>Changes in response properties of neurons associated with discrimination training......Page 966<br>Changes in neuronal responsiveness associated with discrimination and detection training......Page 969<br>Section Summary......Page 970<br>Theories and Models about Perceptual Learning......Page 972<br>Cellular and Molecular Basis......Page 973<br>Concluding Remarks......Page 974<br>References......Page 975<br>Face Recognition......Page 981<br>Introduction......Page 982<br>Configural Processing......Page 983<br>A whole face is more than the sum of its parts......Page 984<br>Spacing effects......Page 985<br>Facelike processing of body stimuli......Page 986<br>General expertise......Page 987<br>Neural Basis of Face Recognition......Page 988<br>Event-Related Potentials......Page 989<br>Intracranial Recording of Neural Responses......Page 990<br>The nature of the face representation in face-selective regions......Page 991<br>Two other face-selective regions: occipital face area and superior temporal sulcus......Page 992<br>Neuropsychological Deficits of Face Recognition......Page 993<br>Acquired Prosopagnosia......Page 994<br>Conditions associated with acquired prosopagnosia......Page 995<br>Lesion location in acquired prosopagnosia......Page 996<br>Developmental Prosopagnosia......Page 997<br>Conditions associated with developmental prosopagnosia......Page 998<br>Face-Specificity in Prosopagnosia......Page 999<br>Face Processing in Newborns......Page 1000<br>Critical Period in the Early Months of Life......Page 1002<br>Conclusion......Page 1003<br>References......Page 1004<br>Relevant Website......Page 1009<br>Glossary......Page 1011<br>Rotational Vestibulo-Ocular Reflex: Basic Properties and Frequency Dependence......Page 1012<br>Rotational Vestibulo-Ocular Reflex: Three-Neuron-Arc and Neural Integrator......Page 1014<br>Translational Vestibulo-Ocular Reflex: Basic Properties......Page 1015<br>Behavioral Observations......Page 1017<br>Neural Signatures of Plasticity: Identifying the Sites for Vestibulo-Ocular Reflex Learning?......Page 1019<br>References......Page 1020<br>Volume 3 - Audition ......Page 1023<br>Introduction to Volume 3......Page 1027<br>Glossary......Page 1029<br>General Considerations......Page 1030<br>The Concepts of Morphological Homology and Molecular Homology......Page 1031<br>What Is a Ciliated Mechanoreceptor Cell?......Page 1032<br>Phylogeny, Homology, and Homoplasy: The Historical Background of the Animal Groups......Page 1033<br>Ciliated Mechanosensory Cells of Vertebrates and Their Relatives......Page 1034<br>Mechanoreceptors in tunicate sea squirts......Page 1035<br>The typical vertebrate hair cell......Page 1036<br>The Origin and History of Vestibular Systems in Craniates......Page 1038<br>The structure and diversity of the vestibular organ......Page 1039<br>The Origin and Phylogeny of a Dedicated Auditory Epithelium......Page 1040<br>The hearing organs of amphibians (frogs and toads and their relatives)......Page 1041<br>The hearing organs of lepidosaurs (lizards and snakes)......Page 1042<br>The hearing organs of archosaur groups (dinosaurs, crocodilians, birds)......Page 1043<br>The hearing organs of mammals......Page 1044<br>Ciliated Mechanoreceptors of Nonchordate Animals......Page 1045<br>Cnidarian Hair Cells......Page 1046<br>Mechanotransduction in Caenorhabditis elegans......Page 1047<br>Ciliated Mechanoreceptors in Insects......Page 1048<br>Mollusk Hair Cells......Page 1051<br>Molecular Evolution of Mechanoreceptors......Page 1053<br>Extrinsic factors regulating mechanoreceptor development......Page 1054<br>The role of transcription factors in mechanoreceptor development......Page 1055<br>Conclusion......Page 1057<br>References......Page 1058<br>Relevant Website......Page 1062<br>Glossary......Page 1063<br>Introduction......Page 1064<br>Tympanal Ears......Page 1065<br>Evolutionary Origins of Tympanal Ears......Page 1067<br>Lepidoptera......Page 1068<br>Orthoptera......Page 1070<br>Hemiptera (Homoptera+Heteroptera)......Page 1073<br>Diptera......Page 1074<br>Nearfield Sound Receptors......Page 1075<br>Summary and Future Considerations......Page 1076<br>References......Page 1079<br>Introduction......Page 1083<br>Binaural Spectral-Difference Cue......Page 1084<br>Pinna Localization Cues......Page 1085<br>Ultrasonic Communication......Page 1086<br>References......Page 1087<br>Relevant Website......Page 1088<br>Glossary......Page 1089<br>Otolith Organs......Page 1090<br>Middle Ears......Page 1091<br>Hearing Performance in the Vertebrate Classes......Page 1093<br>Relations Between Hearing Structure and the Medium......Page 1095<br>Allometry......Page 1096<br>Localization......Page 1097<br>Management of the Acoustic Environment......Page 1099<br>References......Page 1100<br>Glossary......Page 1103<br>The Origin of Mechanosensation Lies in Untethered, Membrane-Tension-Gated Channels......Page 1104<br>The transient receptor potential superfamily......Page 1107<br>Ancestry of Specialized Mechanosensory Cells......Page 1117<br>Known or suspected mechanosensory cells of multicellular animals......Page 1118<br>Mechanosensory cells in Caenorhabditis elegans: connecting degenerin/epithelial sodium channels channels to the cuticle?......Page 1120<br>Genetics of mechanotransduction in Drosophila melanogaster: tethering a kinocilium to the cuticle......Page 1121<br>Mechanosensory Cells in Vertebrates......Page 1122<br>The Zebrafish NompC (TRPN-1): Is There a Divergent Base for Mechanosensory Transduction in the Apparently Structurally Conserved Vertebrate Hair Cells?......Page 1123<br>Active Processes in Hair Cells......Page 1124<br>Development of Mechanoreceptor Cells: Molecular Transformation of an Epidermal Cell into a Mechanoreceptor......Page 1127<br>Conclusions......Page 1128<br>References......Page 1129<br>Relevant Website......Page 1133<br>Glossary......Page 1135<br>Introduction......Page 1136<br>Basic Anatomy of Auditory Epithelia and the Hair Cells......Page 1137<br>Hair cells......Page 1140<br>The Mechanotransduction Apparatus......Page 1141<br>The Basolateral Membrane......Page 1149<br>The Outer Hair Cell Lateral Wall......Page 1153<br>The Cytoplasm......Page 1155<br>Supporting Cells......Page 1156<br>References......Page 1159<br>Glossary......Page 1167<br>Introduction......Page 1168<br>USH1C......Page 1169<br>Mutations......Page 1170<br>Mutations......Page 1171<br>Structure, Expression, and Function......Page 1172<br>Structure, Expression, and Function......Page 1173<br>Outlook for the Future......Page 1174<br>References......Page 1175<br>Introduction......Page 1177<br>A Model of Cochlear K+ Homeostasis......Page 1178<br>Genetic Evidence in Support of Cochlear K+ Recycling......Page 1180<br>References......Page 1181<br>Further Reading......Page 1183<br>Pathophysiology......Page 1185<br>Outline placeholder......Page 0<br>Natural History......Page 1187<br>Treatment......Page 1188<br>Steroids......Page 1189<br>References......Page 1190<br>Mechano-Acoustical Transformations......Page 1193<br>Introduction......Page 1194<br>Newton’s Second Law of Motion......Page 1195<br>The Input and Output Variables......Page 1196<br>Concha and Ear-Canal Resonance......Page 1197<br>Middle Ear......Page 1198<br>Tympanic Membrane Shape and Internal Structure......Page 1200<br>Tympanic Membrane Biomechanics......Page 1201<br>Middle-Ear Imaging......Page 1203<br>Malleus-Incus Complex......Page 1204<br>Stapes......Page 1206<br>Middle-Ear Muscles......Page 1207<br>Vestibular Fluid Pressure......Page 1208<br>Partition Resonance......Page 1210<br>Fluid......Page 1211<br>One-dimensional approximation......Page 1212<br>Two-dimensional approximation......Page 1213<br>Solution Methods......Page 1214<br>Multiscale Organ of Corti Model......Page 1216<br>Outer Hair Cell Motility and the Push-Pull Motion of the Basiliar Membrane......Page 1217<br>Time Delay versus ldquoFeedforward",5,1,2,0,0pc,0pc,0pc,0pc......Page 1220<br>Inner Hair Cell Excitation......Page 1221<br>Cell Motility versus Stereociliary Forces......Page 1223<br>Stiffness Change Along the Cochlea......Page 1224<br>Acknowledgment......Page 1225<br>References......Page 1226<br>Glossary......Page 1231<br>References......Page 1236<br>Introduction......Page 1239<br>Major Functions......Page 1240<br>Mechanoreception in Arthropod Type I Mechanosensilla......Page 1241<br>Ciliary Functions in Type 1 Chordotonal Sensilla......Page 1242<br>References......Page 1243<br>Introduction......Page 1245<br>Interaural Acoustic Coupling......Page 1246<br>Anurans......Page 1247<br>Avians......Page 1249<br>Concluding Remarks......Page 1250<br>References......Page 1251<br>Further Reading......Page 1252<br>Glossary......Page 1253<br>The Evolution of Vertebrate Hearing in Water......Page 1255<br>Hearing Capabilities of Fishes......Page 1256<br>Marine Mammal Auditory Systems......Page 1258<br>Marine Mammal Audiometrics......Page 1260<br>References......Page 1263<br>Further Reading......Page 1264<br>Introduction......Page 1265<br>A Brief History of Otoacoustic Emission......Page 1266<br>Spontaneous Acoustic Emission: A Response Without a Stimulus......Page 1269<br>Emissions Evoked by Low-Level Transients and Single-Frequency Tones......Page 1270<br>Emissions Evoked by Tone Pairs......Page 1271<br>Models of Otoacoustic Emission......Page 1272<br>Emitted Sounds or a Change in the Cochlear Input Impedance?......Page 1275<br>Positive Feedback in the Mechanics of the Cochlea......Page 1276<br>Quasilinearity at Low Stimulus Levels......Page 1277<br>Nonlinear Behavior at Moderate Sound Levels......Page 1278<br>Nonlinear Emissions at Relatively High Stimulus Levels......Page 1281<br>Cellular Mechanisms of Otoacoustic Emission Generation......Page 1282<br>Conclusions and Future Directions......Page 1283<br>References......Page 1284<br>Further Reading......Page 1287<br>Introduction......Page 1291<br>Biophysics of Hair Cell Transduction......Page 1292<br>Tip Links......Page 1295<br>Adaptation......Page 1297<br>The Mechanism of Slow Adaptation......Page 1298<br>The Mechanism of Fast Adaptation......Page 1301<br>Active Hair Bundle Movements......Page 1303<br>Slow Adaptation and Myosin-Ic......Page 1306<br>Other Hair Bundle Myosins......Page 1308<br>Tip Links......Page 1310<br>The Transduction Channel......Page 1313<br>Conclusions......Page 1316<br>References......Page 1317<br>Essential Characteristics of Mechanical Feedback Amplification......Page 1321<br>Signatures of Mechanical Feedback Amplification in Insect Ears......Page 1322<br>Genetic Dissection of Mechanical Feedback Amplification......Page 1323<br>Candidate Sensors and Motors of the Feedback Loop......Page 1324<br>Parallel Evolution of Mechanical Feedback Amplification in Vertebrates and Invertebrates......Page 1325<br>References......Page 1326<br>Relevant Websites......Page 1327<br>Glossary......Page 1329<br>Associated Decreased Sound Tolerance......Page 1331<br>Epidemiology of Tinnitus......Page 1332<br>Peripheral Processes Involved in Tinnitus......Page 1333<br>Evaluation of the Individual with Tinnitus......Page 1334<br>References......Page 1335<br>Further Reading......Page 1336<br>Introduction: Outer Hair Cell Electromotility and Prestin......Page 1337<br>Molecular Structure of Prestin......Page 1338<br>Functional Properties of Prestin......Page 1339<br>Voltage Dependence......Page 1340<br>Biophysical Model......Page 1341<br>Molecular Mechanisms......Page 1342<br>Future Directions......Page 1343<br>References......Page 1344<br>Further Reading......Page 1345<br>Cochlear Receptor Potentials......Page 1347<br>Introduction......Page 1348<br>A History of Sensory Transduction......Page 1349<br>Compound Potentials Recorded from the Cochlea......Page 1350<br>Davis’ Theory of Sensory Transduction......Page 1351<br>IHC Receptor Potentials......Page 1352<br>Factors That Shape the Inner Hair Cell Receptor Potential......Page 1353<br>Voltage-dependent basolateral conductances......Page 1354<br>Inner Hair Cell receptor potential transfer function and operating point depend on cochlear location......Page 1355<br>Transfer Functions of Afferent Synapses......Page 1357<br>Phase Relationships between Inner Hair Cell and Neural Excitation......Page 1360<br>Inner Hair Cell membrane time constant: significance for phase-locking......Page 1361<br>The problem of preserving high temporal resolution in synaptic transmission......Page 1363<br>The problem with owls......Page 1364<br>Outer Hair Cell Receptor Potentials......Page 1365<br>Phase and Magnitude of Outer Hair Cell and Inner Hair Cell Receptor Potentials as Indicators of Electromechanical Feedback......Page 1366<br>The Phase and Magnitude of Outer Hair Cell Receptor Potential and the Positive Feedback Model......Page 1367<br>The Phase of Outer Hair Cell Excitation: A Balance between the Tectorial Membranes Radial Stiffness and Rotational Stiffness of Outer Hair Cell Stereocilia......Page 1368<br>Hair Cell Isoresponse Tuning Curves: Comparison with Mechanical and Neural Tuning Curves......Page 1369<br>Factors Influencing Amplification along the Length of the Basilar Membrane......Page 1370<br>Control of the Outer Hair Cell Transducer-Operating Point......Page 1372<br>Displacement of the Outer Hair Cell Transducer-Operating Point and Gain Optimization......Page 1373<br>Temporary Threshold Shift in Cochlear Sensitivity and Changes in the Operating Point of the Outer Hair Cell Transducer......Page 1376<br>Exploiting Compound Potentials to Understand Cochlear Function and Dysfunction......Page 1378<br>The Nature of the Cochlear Amplifier......Page 1379<br>References......Page 1380<br>Further Reading......Page 1386<br>Glossary......Page 1387<br>Further Reading......Page 1392<br>Glossary......Page 1393<br>Afferent Neurons of Acousticolateralis Sensory Systems......Page 1394<br>Spiral Ganglion Neurons......Page 1395<br>Auditory Nerve Fibers......Page 1396<br>Innervation Patterns and the Function of Auditory Organs......Page 1399<br>The Synaptic Body and Synaptic Vesicle Pools......Page 1400<br>Calcium Buffering in Hair Cells......Page 1403<br>The Synaptic Body (Ribbon) and Its Vesicles......Page 1405<br>Molecular Specializations of Ribbon Synapses......Page 1406<br>Anatomy of the Synaptic Body: Heterogeneity of Structure......Page 1408<br>Vesicle Mobility......Page 1409<br>Transmitter Release and Clearance......Page 1410<br>Relating Anatomical and Functional Vesicle Pools......Page 1411<br>Physiology of the Hair Cell Afferent Synapse......Page 1412<br>Encoding of Phase......Page 1413<br>Baseline and Evoked Synaptic Activity......Page 1414<br>Synaptic frequency selectivity......Page 1416<br>Adaptation of the Auditory Nerve Response......Page 1417<br>The Role of the Synaptic Body in Auditory Nerve Fiber Spike Timing......Page 1418<br>References......Page 1419<br>Further Reading......Page 1423<br>Testing for Auditory Neuropathy......Page 1425<br>Clinical Features of Auditory Neuropathy......Page 1426<br>Exceptions to the Criteria for Defining Auditory Neuropathy......Page 1428<br>Pathophysiology of Auditory Neuropathy......Page 1429<br>Psychoacoustic Deficits of Auditory Neuropathy......Page 1430<br>Inner Hair Cell Channelopathy-Knockout of the Inner Hair Cell CaV1.3......Page 1434<br>Auditory Nerve Fiber Myelin Disorder......Page 1436<br>References......Page 1439<br>Efferent System......Page 1441<br>Olivocochlear Anatomy......Page 1442<br>Medial olivocochlear anatomy......Page 1443<br>Lateral olivocochlear anatomy......Page 1444<br>Lateral olivocochlear neurotransmitters......Page 1445<br>Cortico-Cochlear Pathways......Page 1447<br>Effects on cochlear electrical responses and otoacoustic emissions......Page 1449<br>Mechanisms of inhibition of OHC activity......Page 1450<br>Fast and slow effects of olivocochlear activation......Page 1451<br>Medial olivocochlear effects on cochlear mechanics......Page 1452<br>Efferent modulation by electrical activation of the auditory cortex......Page 1453<br>Acoustic efferent effects in experimental animals......Page 1454<br>Section of olivocochlear efferents in animals......Page 1456<br>Vestibular-nerve section in humans......Page 1457<br>alpha9-Nicotinic acetylcholine receptor knockout mice......Page 1458<br>Gentamicin......Page 1459<br>Neurochemistry of lateral olivocochlear dopaminergic transmission......Page 1460<br>Antimasking of Auditory Stimuli in Noise......Page 1461<br>Antimasking of tones and speech in humans......Page 1462<br>Medial olivocochlear protection to loud sounds......Page 1463<br>Modulation of Sensory Input During Sleep......Page 1464<br>Some Clinical Findings......Page 1465<br>References......Page 1467<br>Further Reading......Page 1473<br>Overview of Treatment of Hearing Loss......Page 1475<br>Introduction......Page 1476<br>Tympanoplasty......Page 1478<br>Perforation of the tympanic membrane......Page 1479<br>Bone-anchored hearing aid......Page 1480<br>Pharmacological treatments......Page 1481<br>Sudden sensorineural hearing loss......Page 1482<br>Ototoxicity and sound trauma......Page 1483<br>Cochlear Implants......Page 1484<br>Treatment for Acoustic Neuromas......Page 1485<br>Completely-in-the-canal......Page 1486<br>Mini-behind-the-ear......Page 1487<br>Microphone technology......Page 1488<br>Directional microphone hearing aid technology......Page 1489<br>Digital signal processing......Page 1490<br>Assistive Listening Devices......Page 1491<br>References......Page 1492<br>Relevant Websites......Page 1495<br>Cochlear Implants......Page 1497<br>Temporal Coding......Page 1498<br>Speech Recognition......Page 1499<br>Cochlear Implants as a Tool for Neuroscience......Page 1500<br>References......Page 1501<br>Further Reading......Page 1502<br>Background......Page 1503<br>Signal-to-Noise Ratio Loss......Page 1504<br>Early Hearing Aids......Page 1505<br>Modern Digital Hearing Aids - Limitations......Page 1506<br>Modern Digital Hearing Aids - Improvements......Page 1507<br>Satisfaction and Technology......Page 1508<br>Over-the-Counter Hearing Aids......Page 1509<br>References......Page 1510<br>Regeneration in the Avian Ear......Page 1513<br>Regulation of Supporting Cell Proliferation......Page 1514<br>Regeneration in the Absence of Cell Proliferation......Page 1515<br>References......Page 1516<br>Further Reading......Page 1517<br>Introduction......Page 1519<br>Viral Vectors: An Overview......Page 1520<br>Intracochlear Viral Gene Delivery......Page 1521<br>Cochlear Gene Therapy: Safety Considerations......Page 1523<br>Future Implications......Page 1524<br>References......Page 1525<br>Glossary......Page 1527<br>Sensory Receptors......Page 1528<br>Overview of General Auditory Pathway for All Vertebrates......Page 1529<br>Functional Organization in Fishes......Page 1530<br>The Auditory Periphery of Fishes......Page 1531<br>The Auditory Medulla in Fishes......Page 1533<br>The Auditory Midbrain of Fishes......Page 1534<br>Functional Organization in Lissamphibians......Page 1536<br>The Auditory Periphery of Lissamphibians......Page 1537<br>The Auditory Medulla of Amphibians......Page 1538<br>The Auditory Forebrain of Anurans......Page 1539<br>The Auditory Periphery of Reptilia......Page 1540<br>The Auditory Medulla of Reptilia......Page 1541<br>The Auditory Forebrain of Reptilia......Page 1542<br>Functional Organization in Mammals......Page 1543<br>The Auditory Medulla of Mammals......Page 1544<br>The Auditory Forebrain of Mammals......Page 1546<br>References......Page 1547<br>Further Reading......Page 1551<br>Invertebrate Auditory Pathways......Page 1553<br>General Introduction......Page 1554<br>Distribution and Design of Ears......Page 1555<br>Common features of receptor projections......Page 1556<br>Functional organization of central afferent projections......Page 1557<br>Temporal Coding......Page 1561<br>Lepidoptera......Page 1562<br>Gryllids......Page 1563<br>Noctuid Moths......Page 1564<br>Noctuid Moths......Page 1565<br>Mantises......Page 1566<br>Tettigoniids......Page 1567<br>Gryllids......Page 1569<br>Pattern Recognition in Grasshoppers......Page 1573<br>Gryllids......Page 1574<br>Tettigoniids......Page 1576<br>Flies......Page 1577<br>What Is the Neural Code for Sound Direction?......Page 1578<br>Contralateral Inhibition in Gryllids......Page 1579<br>Contralateral Inhibition in Acridids......Page 1581<br>Ventilation and Flight......Page 1582<br>Crickets......Page 1583<br>References......Page 1585<br>Further Reading......Page 1591<br>Glossary......Page 1593<br>Introduction......Page 1594<br>Firing Patterns......Page 1595<br>The Kv Family......Page 1597<br>The Kv3 family......Page 1598<br>Channel Specialization and Biophysical Characterization of the Channels in the Vertebrate Auditory Cental Nervous System......Page 1599<br>The low voltage-activated potassium conductance......Page 1600<br>The high voltage-activated potassium conductance......Page 1601<br>Octopus Cells......Page 1602<br>Dorsal Cochlear Nuclear Pyramidal Cells......Page 1603<br>Medial Superior Olive......Page 1604<br>Inferior colliculus......Page 1605<br>The Role of Low-Voltage-Activated K+ Channels in Temporal Integration......Page 1606<br>Tonotopic Channel Expression Patterns, and Relationship to Integrative Roles......Page 1608<br>References......Page 1609<br>Glossary......Page 1615<br>Synaptic Transmission......Page 1616<br>Overview of the Types and Morphology of Synapses in Auditory Pathways......Page 1617<br>Bushy Cells and the Endbulbs of Held......Page 1618<br>Medial Nucleus of the Trapezoid Body......Page 1619<br>Transmission at Giant Synapses......Page 1620<br>Synaptic Strength at Auditory Relays......Page 1621<br>Synaptic Depression......Page 1622<br>Alpha-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptors and K+ Channels......Page 1623<br>Endbulbs versus Calyces versus Hair Cells......Page 1624<br>Inhibition......Page 1625<br>Presynaptic Modulation......Page 1626<br>References......Page 1627<br>Introduction......Page 1631<br>Prepulse inhibition......Page 1632<br>Ambient noise......Page 1633<br>Relationship between hearing loss and central plasticity......Page 1634<br>Auditory Neurophysiology......Page 1635<br>Acknowledgment......Page 1636<br>References......Page 1637<br>Further Reading......Page 1639<br>Overview and Background......Page 1641<br>Interaural Time Disparity: The Cue for Low-Frequency Sound Localization......Page 1642<br>Processing Interaural Time Disparities: Physiology......Page 1643<br>Inputs to Nucleus Laminaris......Page 1644<br>Encoding of Interaural Time Disparities in Nucleus Laminaris......Page 1646<br>Intrinsic Properties of Nucleus Laminaris Neurons Specialized for Interaural Time Disparity Computation......Page 1647<br>The Role of Inhibition in Nucleus Luminaris Function......Page 1649<br>Mammalian Interaural Time Disparity-Encoding Circuitry......Page 1651<br>Response Properties of Medial Superior Olive Neurons......Page 1652<br>The Role of Inhibition in the Medial Superior Olive......Page 1653<br>The Neural Code for Interaural Time Disparity in Mammals......Page 1654<br>References......Page 1655<br>Introduction......Page 1659<br>The Superior Olivary Complex......Page 1660<br>The Three Main Acoustical Cues to Sound Source Location......Page 1661<br>Interaural Level Differences......Page 1663<br>Lateral Superior Olive Neurons Receive Excitatory Inputs from One Ear and Inhibitory Inputs from the Other Ear......Page 1664<br>Spectral representation by lateral superior olive afferents......Page 1665<br>The Inputs from Each Ear to Individual Neurons Have Similar Frequency Tuning......Page 1666<br>Inputs from the Two Ears Reach Lateral Superior Olive Neurons in Approximate Temporal Register......Page 1668<br>Sensitivity to interaural level differences in pure-tone stimuli......Page 1671<br>Sensitivity to interaural level differences in virtual space (VS) stimuli that mimic free-field sounds......Page 1673<br>Comparative Studies Implicate the LSO as Necessary for ILD Processing......Page 1677<br>References......Page 1678<br>Further Reading......Page 1681<br>Glossary......Page 1683<br>Overview......Page 1684<br>Early Studies of Human Head-Related Transfer Functions......Page 1685<br>Modern Studies of Human Head-Related Transfer Functions......Page 1687<br>Directional Transfer Functions......Page 1690<br>Modeling the Auditory-Nerve Representation of Monaural Spectral Cues......Page 1691<br>Distinguishing Sound Localization and Directional Acuity......Page 1694<br>Dorsal Cochlear Nucleus......Page 1696<br>Inferior Colliculus......Page 1698<br>Altering the Ear’s Input to the Brain......Page 1702<br>Spectral Manipulations......Page 1703<br>Cochlear Deficits......Page 1707<br>Experimental Lesions of the Dorsal Cochlear Nucleus......Page 1708<br>Experimental Lesions of the Inferior Colliculus and Its Projections......Page 1710<br>Species Comparisons of the Spectral Processing Pathway......Page 1713<br>References......Page 1717<br>Further Reading......Page 1721<br>Cochlear Physiology......Page 1723<br>Cochlear Anatomy......Page 1724<br>Cochlear Development......Page 1725<br>Further Reading......Page 1726<br>Introduction......Page 1729<br>The Medial Superior Olive of Normal Low-Frequency Hearing Mammals......Page 1731<br>The Medial Superior Olive of Normal High-Frequency Hearing Mammals......Page 1734<br>The Medial Superior Olive of Bats......Page 1736<br>Frequency-modulated bats......Page 1737<br>Constant-frequency-frequency-modulated bats......Page 1739<br>Frequency-modulated bats......Page 1741<br>Conclusions......Page 1742<br>References......Page 1743<br>Parallel Pathways for Processing Interaural Time Difference and Interaural Intensity Difference......Page 1747<br>Detection and Coding of Interaural Time Difference......Page 1748<br>A Map of Auditory Space......Page 1749<br>References......Page 1750<br>Further Reading......Page 1751<br>Introduction......Page 1753<br>Constraints and Limitations......Page 1754<br>Directional Detection with Particle Velocity Receivers......Page 1755<br>Directional Hearing Using Pressure Difference Receivers......Page 1756<br>Directional Hearing Using Mechanically Coupled Pressure Receivers......Page 1757<br>Microsecond-Range Acoustic Events and Neural Responses......Page 1758<br>References......Page 1759<br>Glossary......Page 1761<br>Sources of Ascending Inputs to the Inferior Colliculus......Page 1763<br>Binaural and Monaural Pathways......Page 1764<br>The Ventral Cochlear Nucleus System......Page 1765<br>The Dorsal Cochlear Nucleus System......Page 1767<br>Laminar Projections Within the Anteroventral Cochlear Nucleus System......Page 1769<br>Relation between Dorsal Cochlear Nucleus and Ventral Cochlear Nucleus System Projections......Page 1770<br>Relation with Intrinsic Connections......Page 1772<br>Biochemical Gradients......Page 1773<br>Evidence for Functional Gradients......Page 1774<br>References......Page 1775<br>Further Reading......Page 1778<br>Structure of the Nuclei of the Lateral Lemniscus......Page 1779<br>Role of the Dorsal Nucleus of the Lateral Lemniscus in Binaural Hearing......Page 1781<br>Role of the Nuclei of the Lateral Lemniscus in Frequency Integration......Page 1782<br>Concluding Remarks......Page 1783<br>References......Page 1784<br>Further Reading......Page 1785<br>Glossary......Page 1787<br>Visual Calibration of the Auditory Space Map......Page 1788<br>Developmental Regulation of Map Plasticity......Page 1789<br>Training in Small Increments......Page 1790<br>Further Reading......Page 1791<br>Introduction......Page 1793<br>First Level of Cortical Processing: The Core Areas......Page 1795<br>Second Level of Cortical Processing: The Areas of the Auditory Belt......Page 1797<br>Middle Lateral and Anterior Lateral Areas......Page 1799<br>Third Level of Cortical Processing: The Auditory Parabelt Areas......Page 1800<br>Levels of Auditory Processing Defined by Inputs from the Parabelt: Areas of the Fourth Level......Page 1801<br>Auditory Cortex in Other Mammals......Page 1802<br>Cats and Other Carnivores......Page 1803<br>Bats......Page 1804<br>Conclusions......Page 1805<br>References......Page 1806<br>Further Reading......Page 1808<br>Glossary......Page 1809<br>Spatial Receptive Fields in the Primary Auditory Cortex......Page 1810<br>Spatial Sensitivity Outside Area A1......Page 1812<br>Spatial Sensitivity in Unanesthetized Cats......Page 1814<br>Dynamic Spatial Sensitivity......Page 1816<br>Multiple Sound Sources......Page 1817<br>Acoustic Basis for Spatial Sensitivity......Page 1818<br>Sound Localization by Single Neurons......Page 1820<br>Information-Bearing Features of Spike Patterns......Page 1821<br>Location Signaling by Populations of Neurons......Page 1822<br>Impact of Cortical Inactivation on Localization Behavior......Page 1824<br>Role of the Auditory Cortex in Operant Localization of Sound Sources......Page 1825<br>Reversible Cortical Inactivation......Page 1826<br>Summary of Effects of Cortical Inactivation......Page 1827<br>Spatial Hearing and the Human Auditory Cortex......Page 1828<br>Summary and Future Directions......Page 1829<br>References......Page 1830<br>Further Reading......Page 1833<br>Glossary......Page 1835<br>Introduction and the History of the Study of Pitch......Page 1836<br>Measuring Pitch as a Subjective Attribute of Sound......Page 1837<br>Musical Pitch......Page 1838<br>Place and Temporal Processing of Frequency (and Their Relationship to Pitch)......Page 1839<br>Pitch of Complex Sounds (Introduction to and the History of Complex Pitch Perception)......Page 1841<br>Missing Fundamental Pitch and the Pitch-Shift of the Residue......Page 1842<br>Temporal Fine Structure and Complex Pitch Processing......Page 1844<br>Models and Theories of Complex Pitch Processing......Page 1846<br>Which Type of Model Provides the Better Predictions for Complex Pitch?......Page 1850<br>Pitch Strength or Pitch Saliency......Page 1851<br>Neural Processing of Pitch......Page 1852<br>References......Page 1855<br>Further Reading......Page 1856<br>Glossary......Page 1857<br>Introduction......Page 1859<br>Speech Production......Page 1860<br>Linguistic Sound Systems......Page 1862<br>The Inverse Problem......Page 1864<br>Information for Perception......Page 1865<br>Contrast in General......Page 1867<br>Contrast and Perception of Co-Articulated Speech......Page 1868<br>Broader Spectral and Temporal Effects......Page 1871<br>Speech Perception Uses Multiple Sources of Information......Page 1873<br>Categorical Perception......Page 1874<br>Principal components analysis: an analogy......Page 1875<br>Categorical perception as competing correlations......Page 1876<br>Multimodal interactions are expected......Page 1877<br>Vowels......Page 1878<br>Second-Language Perception......Page 1879<br>Lexical Development and the Emergence of Phonemes (or Something like Them)......Page 1881<br>Speech in the Brain......Page 1882<br>References......Page 1884<br>Glossary......Page 1889<br>The Problem of Mixtures......Page 1890<br>The auditory stream......Page 1891<br>Grouping of Acoustic Energy Based on Acoustic Regularities......Page 1892<br>Cooperation and competition in ASA......Page 1893<br>Main findings......Page 1894<br>Other findings......Page 1895<br>Brain Recording and the Role of Attention in ASA......Page 1896<br>Summary......Page 1897<br>Relevant Websites......Page 1898<br>Glossary......Page 1899<br>Introduction......Page 1900<br>Frequency resolution and discrimination......Page 1901<br>Intensity Coding......Page 1903<br>Absolute sensitivity......Page 1904<br>Intensity discrimination......Page 1906<br>Temporal Resolution......Page 1907<br>Sound localization......Page 1908<br>Binaural masking level difference and spatial release from masking......Page 1909<br>Sound Source Determination......Page 1910<br>Selective listening to relevant sound features......Page 1912<br>Ignoring irrelevant sound features......Page 1913<br>Listening to competing messages......Page 1914<br>Summary and Conclusion......Page 1915<br>References......Page 1916<br>Glossary......Page 1923<br>Sleep and Memory Consolidation in Humans......Page 1924<br>Auditory Memory Consolidation......Page 1925<br>Bird Song Learning......Page 1926<br>The Role of Sleep in Song Learning: Circadian Deconsolidation during Vocal Development......Page 1927<br>Evidence for Reactivation during Sleep in Humans......Page 1928<br>Mechanisms of Sleep and Memory Consolidation in Vocal Learning......Page 1929<br>Physiological specificity within the auditory pathways......Page 1930<br>State-Dependent Auditory Processing in the Song System of Awake Birds......Page 1931<br>Neuromodulatory processing in the song system of awake birds......Page 1932<br>Site and form of the replay phenomenon......Page 1933<br>Plasticity in Robust Nucleus of Archopallium replay - spontaneous and auditory activity......Page 1934<br>Sleep-mediated developmental plasticity in Robust Nucleus of Archopallium......Page 1935<br>References......Page 1936<br>Volume 4 - Olfaction and Taste ......Page 1940<br>Introduction to Volume 4......Page 1944<br>Dedication......Page 1946<br>Introduction......Page 1948<br>Nature of Chemical Signals......Page 1949<br>Dynamics of Chemical Signals......Page 1951<br>Receptor Expression Patterns......Page 1952<br>Receptor-Ligand Pairings......Page 1954<br>Receptor Gene Family Evolution......Page 1955<br>Receptor Cell Turnover......Page 1957<br>Signal Transduction......Page 1958<br>Mechanical Processes......Page 1960<br>Biochemical Processes......Page 1961<br>Central Neural Organization......Page 1962<br>Quality Coding......Page 1963<br>Chemosensory-Mediated Behavior and Plasticity......Page 1965<br>References......Page 1967<br>Further Reading......Page 1972<br>Glossary......Page 1974<br>Introduction......Page 1975<br>Biochemistry of Sweet Taste......Page 1976<br>Sweetener Structure-Activity Relationship......Page 1978<br>Carbohydrate caloric, partially caloric and noncaloric sweeteners......Page 1979<br>Synthetic noncaloric sweeteners......Page 1983<br>Natural noncaloric sweeteners......Page 1989<br>Sweet-tasting minerals......Page 1995<br>Temporal profiles......Page 1996<br>Biochemistry of Bitter Taste......Page 1997<br>Bitterant Structure-Activity Relationship......Page 2000<br>Biochemistry of Umami Taste......Page 2003<br>Umami Tastant Structure-Activity Relationship......Page 2004<br>Sour-Tasting Stimuli......Page 2005<br>Biochemistry of Sour Taste......Page 2006<br>Acidulant Structure-Activity Relationship......Page 2009<br>Biochemistry of Salty Taste......Page 2011<br>Salty Tastant Structure-Activity Relationship......Page 2013<br>References......Page 2015<br>Further Reading......Page 2021<br>Introduction......Page 2022<br>Organization of the Peripheral Gustatory System......Page 2023<br>Bitter Compounds......Page 2024<br>Carbohydrates......Page 2027<br>Salts......Page 2028<br>Acids......Page 2029<br>Organization of the Central Gustatory System......Page 2030<br>Central Processing of Gustatory Input......Page 2031<br>Coding Mechanisms......Page 2032<br>Taste-Mixture Interactions......Page 2033<br>Nutrient Levels in Blood......Page 2034<br>Long-term adaptation......Page 2035<br>Future Directions......Page 2036<br>References......Page 2037<br>Aquatic Animal Models in the Study of Chemoreception......Page 2044<br>Glossary......Page 2045<br>Introduction......Page 2046<br>Fish......Page 2047<br>Crustaceans......Page 2048<br>Specificity of single olfactory receptor neurons......Page 2049<br>Correlation between olfactory receptor neuron type, transduction process, and odorant sensitivity......Page 2050<br>Olfactory sensilla......Page 2051<br>Tuning......Page 2052<br>Processing Chemical Information by Single Peripheral Chemoreceptor Neurons of Crustaceans......Page 2053<br>Organization of the olfactory bulb......Page 2054<br>Odotopic representation of odorants in the teleost olfactory bulb......Page 2055<br>Odorant specificity of single olfactory bulb neurons......Page 2056<br>Olfactory forebrain......Page 2058<br>Organization of the olfactory lobes......Page 2059<br>Organization of other chemosensory neuropils......Page 2060<br>Neurogenesis and Turnover of Olfactory Neurons in Adult Crustaceans......Page 2061<br>Peripheral Taste Anatomy......Page 2062<br>Peripheral Nerve Taste Responses......Page 2063<br>Processing Taste Information by Single Peripheral Taste Fibers......Page 2064<br>Taste and Tactile Input to the Central Nervous System (Medulla)......Page 2065<br>Introduction......Page 2066<br>Taste......Page 2067<br>Electrophysiology......Page 2068<br>Behavior......Page 2069<br>Fish......Page 2070<br>Overview......Page 2071<br>References......Page 2072<br>Ultrastructure of Taste Buds......Page 2082<br>History......Page 2083<br>General Morphological Features of Rabbit Foliate Taste Buds......Page 2085<br>Type I cells......Page 2086<br>Type III cells......Page 2087<br>Primary Taste Bud Cell Types......Page 2090<br>Type I cells......Page 2091<br>Type II cells......Page 2092<br>Type IV cells (basal cells)......Page 2093<br>Taste Cell Synapses......Page 2094<br>Atypical mitochondria......Page 2095<br>Concluding Remarks......Page 2096<br>References......Page 2097<br>Further Reading......Page 2101<br>Introduction......Page 2104<br>The Taste Periphery: Of Buds and Bumps......Page 2105<br>Development of the Taste Periphery: How Does Taste Bud Pattern Arise?......Page 2106<br>Taste Bud Development in Axolotls......Page 2107<br>Taste Bud Development in Rodents......Page 2108<br>Molecular Mechanisms of Taste Patterning......Page 2109<br>Development of the Circumvallate Papilla, a Specialized Structure in Mammals......Page 2111<br>Taste Bud Cell Lineage and Turnover......Page 2112<br>Development of Gustatory Innervation......Page 2113<br>Development of Peripheral Taste Innervation......Page 2114<br>Development of Projections of Gustatory Neurons to the Central Nervous System......Page 2118<br>Survival and Maintenance of Gustatory Neurons and Taste Buds......Page 2119<br>Plasticity of Central Taste Connections......Page 2121<br>References......Page 2122<br>Relevant Website......Page 2128<br>Fetal Life and Infancy......Page 2130<br>Childhood and Adolescence......Page 2131<br>Childhood......Page 2132<br>References......Page 2133<br>Taste Analgesia in Human Infants......Page 2136<br>General Properties......Page 2137<br>Outstanding Issues and Recent Developments......Page 2138<br>Ontogeny of Taste-Analgesia and Efficacy for Inflammatory Pain......Page 2139<br>Neural Circuitry......Page 2140<br>Future Directions......Page 2141<br>References......Page 2142<br>Introduction......Page 2144<br>Discovery of TAS2Rs......Page 2145<br>Expression of TAS2R genes in oral tissues......Page 2146<br>Tuning of TAS2Rs to their agonists......Page 2147<br>Activation of TAS2Rs by agonists......Page 2148<br>G-protein coupling......Page 2149<br>Polymorphisms and Functional Heterogeneity of TAS2Rs......Page 2150<br>Structure-function studies of family C receptors’ venus flytrap module......Page 2151<br>Role of the transmembrane domain in family C G-protein-coupled receptors......Page 2152<br>Identification of Sac locus GPCR Tas1R3 - Tas1R3 is Sac......Page 2153<br>Ligand-Binding Sites on Tas1Rs......Page 2154<br>Activity assays map the sweet receptor aspartame interaction site to the VFTM of hTas1R2......Page 2155<br>Mutational analysis of the aspartame interaction site within the venus flytrap module of hTas1R2......Page 2156<br>The cysteine-rich domain of Tas1R3......Page 2157<br>Future Studies/Unanswered Questions......Page 2159<br>References......Page 2161<br>Introduction......Page 2166<br>Taste Buds, Taste Cell Types, and Afferent Innervation......Page 2167<br>Salt Taste......Page 2168<br>ENaC - the amiloride-sensitive salt taste receptor......Page 2169<br>Amiloride-insensitive mechanisms......Page 2170<br>Proton-gated ion channels......Page 2171<br>PKD1L3 and PKD2L1......Page 2172<br>G proteins......Page 2173<br>Effector enzymes......Page 2174<br>Target channels......Page 2175<br>Fatty acid modulation of taste cells......Page 2176<br>Adenosine Triphosphate as a Transmitter......Page 2177<br>Serotonin and Other Neuroactive Modulators......Page 2178<br>References......Page 2179<br>Glossary......Page 2184<br>Functional Organization of the Taste System in Vertebrates......Page 2185<br>Primary sensory nuclei......Page 2186<br>Visceral-Limbic Connections......Page 2187<br>Gustatory Centers in Fish: A Comparative Viewpoint......Page 2188<br>Facial nerve specializations......Page 2189<br>Brainstem Reflex Connections......Page 2191<br>Second-Order Gustatory Nuclei......Page 2192<br>Primary Sensory Nucleus......Page 2193<br>Primary afferent inputs......Page 2194<br>Subdivisions and cell types......Page 2195<br>Brainstem Reflex Connections......Page 2197<br>Topography of taste quality......Page 2200<br>Lemniscal Pathway......Page 2201<br>Basal Forebrain and Descending Pathways......Page 2202<br>References......Page 2203<br>Further Reading......Page 2206<br>Neurotransmitters in the Sensory Ganglia Involved in Transmission of Taste Information......Page 2208<br>Neurotransmitters in the Rostral Nucleus of the Solitary Tract Involved in Processing of Taste Information......Page 2209<br>Neurotransmitters in the Parabrachial Nucleus Involved in Processing of Taste Information......Page 2212<br>Synaptic Effects of Neuromodulators Known to have Profound Effects on Feeding Behavior on rNST Neurons......Page 2213<br>Conclusions......Page 2214<br>References......Page 2215<br>History of Functional Magnetic Resonance Imaging Applied to the Study of Task-Dependent Cerebral Activation......Page 2218<br>Mapping Brain Activity in Response to Taste Stimulation......Page 2219<br>The Insular/Opercular Area and the Role of Anterior Inferior Insula......Page 2220<br>Timing of Activation: Magnetoencephalography Experiments......Page 2221<br>Orbitofrontal Cortex, an Integrative Area Contributing to Hedonic Valence and Food Reward......Page 2222<br>Other Areas......Page 2223<br>References......Page 2224<br>Relevant Website......Page 2226<br>Epithelial Na+ Channel Function......Page 2228<br>Epithelial Na+ Channel Structure......Page 2229<br>Epithelial Na+ Channel Regulation......Page 2230<br>Regulation of Epithelial Na+ Channel by Intracellular Ca2+ and Salt Taste......Page 2231<br>Regulation of Epithelial Na+ Channel by Osmolarity and Salt Taste......Page 2232<br>Regulation of Epithelial Na+ Channel by Proteases and Salt Taste......Page 2233<br>References......Page 2234<br>Introduction......Page 2236<br>Morphological cell types......Page 2239<br>Cell types based on biophysical properties......Page 2240<br>Cell types based on gustatory responsiveness......Page 2241<br>Breadth of tuning of nucleus of the solitary tract and parabrachial nuclei neurons......Page 2244<br>Convergence, orotopy, and oral somatosensory responsiveness......Page 2245<br>Physiological alterations......Page 2247<br>Homeostatic mechanisms: feeding and appetite......Page 2248<br>Learning: conditioned preferences and aversions......Page 2249<br>Gamma-aminobutyric acid, tonic inhibition......Page 2250<br>Other neurotransmitters: dopamine, acetylcholine, and nitric oxide......Page 2251<br>Lateral hypothalamus......Page 2252<br>Central nucleus of the amygdala......Page 2253<br>Bed nucleus of the stria terminalis......Page 2254<br>Organization and relationship to other sensory modalities......Page 2255<br>Taste-somatosensory relationships......Page 2256<br>Taste-olfactory relationships......Page 2257<br>Breadth of tuning......Page 2259<br>Excitatory amino acids......Page 2260<br>Gamma-aminobutyric acid......Page 2261<br>Acetylcholine......Page 2262<br>Neurochemical substrate for conditioned taste aversion......Page 2263<br>Limbic Forebrain......Page 2264<br>Conclusions......Page 2265<br>References......Page 2266<br>Introduction......Page 2276<br>Population Coding and Neural Interactions......Page 2277<br>Functional Implications of Interactive Population Coding......Page 2278<br>The Purposes of Neural Interactions in Taste......Page 2280<br>References......Page 2281<br>Glossary......Page 2286<br>Color......Page 2287<br>Smell......Page 2288<br>Chemosensory Quality Constancy......Page 2289<br>References......Page 2290<br>Glossary......Page 2292<br>Oral Chemesthesis: Anatomy......Page 2293<br>Oral Chemesthesis: Physiology......Page 2297<br>Chemoirritation: Temporal Phenomena......Page 2300<br>Irritant-Taste Interactions......Page 2303<br>Peripheral Interactions......Page 2305<br>Central Interactions - Nucleus of the Solitary Tract......Page 2308<br>Cognitive Interactions......Page 2309<br>References......Page 2310<br>Further Reading......Page 2316<br>Genetics and Evolution of Taste......Page 2318<br>Assessing Taste Behavior......Page 2319<br>Behavioral Genetic Techniques......Page 2320<br>Genetics of Taste Responses to Other Bitter Compounds in Mice......Page 2323<br>Evolution of the T2R Receptors......Page 2324<br>Strain Differences in Responses to Sweet-Tasting Stimuli......Page 2326<br>Umami Taste Genetics......Page 2327<br>Evolution of T1R Receptors......Page 2329<br>Taste and Diet......Page 2330<br>Conclusions......Page 2331<br>References......Page 2332<br>Relevant Websites......Page 2337<br>Glossary......Page 2338<br>Visual Analog Scales and Category Scales: Invalid for Across-Group Psychophysical Comparisons......Page 2339<br>Magnitude Matching......Page 2340<br>How Are Supertasters Defined?......Page 2341<br>Cancer Risk......Page 2343<br>References......Page 2344<br>Further Reading......Page 2346<br>What Makes Salt Taste Salty?......Page 2348<br>Liking for Salt: Sodium Need......Page 2349<br>Liking for Salt: Need-Free Consumption......Page 2350<br>What Are the Functions of Salt in Food?......Page 2351<br>What Can Be Done to Reduce Salt Consumption?......Page 2352<br>References......Page 2353<br>Further Reading......Page 2354<br>Introduction......Page 2356<br>Domains of Taste Function......Page 2357<br>Procedure......Page 2358<br>Limitations......Page 2360<br>Limitations......Page 2361<br>Limitations......Page 2362<br>Procedure......Page 2363<br>Peripheral Mechanisms of Salt Taste......Page 2364<br>Use of Behavioral Procedures to Study the Functional Neuroanatomy of the Central Gustatory System......Page 2366<br>Taste function after lesions in the gustatory nuclei......Page 2367<br>References......Page 2369<br>General Description......Page 2376<br>Salience of Taste Cues......Page 2377<br>Neural Mediation of Food Aversion Learning......Page 2378<br>Food Aversions in Humans......Page 2379<br>Clinical Implications......Page 2380<br>References......Page 2381<br>Further Reading......Page 2382<br>Glossary......Page 2384<br>Central Representation of Flavor......Page 2385<br>Somatic Motor Responses......Page 2386<br>Benzodiazepine......Page 2387<br>Opioids......Page 2389<br>Substances Related to Negative Hedonics......Page 2390<br>The Role of Dopamine in Food Reward......Page 2391<br>The Nucleus Accumbens......Page 2392<br>Feeding Behavior to Palatable and Aversive Foods......Page 2393<br>Aversion Learning......Page 2395<br>Brain Imaging Study on Hedonic Evaluation in Humans......Page 2397<br>References......Page 2399<br>Relevant Website......Page 2405<br>Dopamine and Reward......Page 2406<br>Dopamine and Sucrose Preference......Page 2407<br>Central Pathways of Sucrose Reward......Page 2409<br>Sucrose Reward without Dopamine......Page 2410<br>References......Page 2411<br>The Primary and Secondary Taste Cortex......Page 2416<br>The Representation of Flavor: Convergence of Olfactory and Taste Inputs......Page 2417<br>The Rules Underlying the Formation of Flavor Representations in the Primate Cortex......Page 2418<br>The Responses of Orbitofrontal Cortex Taste and Olfactory Neurons to the Texture, and Temperature of Food......Page 2419<br>Taste......Page 2420<br>Olfactory-Taste Convergence to Represent Flavor......Page 2421<br>Cognitive Influences on Olfactory and Flavor Processing......Page 2423<br>References......Page 2424<br>Further Reading......Page 2425<br>Introduction......Page 2426<br>Taste Thresholds in a General Elderly Population......Page 2427<br>Sodium salts......Page 2429<br>Sweet compounds......Page 2430<br>Astringent compounds......Page 2431<br>Nonuniformity of Taste Loss......Page 2432<br>Magnitude Estimation......Page 2433<br>Qualitative Perception in the Elderly......Page 2434<br>Medications Associated with Taste Alterations......Page 2435<br>Medical Conditions Associated with Taste Complaints......Page 2438<br>Cause of Taste Losses in the Absence of Drugs and Disease......Page 2439<br>Final Comment......Page 2441<br>References......Page 2442<br>Receptor Potential as an Initial Membrane Excitation......Page 2446<br>Can Olfactory Receptor Cells Detect a Single Odorant Molecule?......Page 2448<br>Enzyme - Second Messenger: cyclic AMP and InsP3......Page 2449<br>Cyclic Nucleotide-Gated Channel......Page 2450<br>Signal Amplification: Comparison with the Phototransduction......Page 2451<br>Adaptation......Page 2453<br>Functional Roles of Molecular Elements in the Olfactory Cilia......Page 2454<br>Resting Membrane Potential and Spike Discharges......Page 2455<br>Further Reading......Page 2456<br>Phylogeny......Page 2458<br>Structure......Page 2460<br>Pore......Page 2461<br>Cyclic Nucleotide-Binding Domain......Page 2462<br>C-Linker region......Page 2463<br>Amino-Terminal Domain......Page 2464<br>Physiology......Page 2465<br>Modulation......Page 2467<br>Conclusion......Page 2468<br>References......Page 2469<br>Introduction......Page 2474<br>Protein Structure......Page 2475<br>Olfactory Receptor Genes......Page 2476<br>Single-Receptor Gene Choice......Page 2477<br>Spatial Expression Pattern......Page 2478<br>Ectopic Expression......Page 2479<br>General Considerations for Functional Expression......Page 2480<br>Olfactory Receptor Pharmacology......Page 2481<br>Odorant-Binding Site......Page 2483<br>Odorant Sensitivity and Specificity......Page 2484<br>Axon Guidance......Page 2485<br>Pheromone Detector......Page 2486<br>References......Page 2487<br>Organization and Structure of the Odorant Receptor Genes......Page 2492<br>Single Odorant Receptor Expression in Each Olfactory Sensory Neuron......Page 2493<br>Positive Regulation......Page 2494<br>Negative Regulation......Page 2495<br>References......Page 2497<br>The Zebrafish OR Repertoire......Page 2500<br>Comparison of the Zebrafish, Mouse, and Pufferfish OR Repertoires......Page 2501<br>Conserved Motifs in Predicted OR Protein Sequences......Page 2504<br>Evolution of the Vertebrate OR Gene Repertoire......Page 2506<br>Relevant Website......Page 2507<br>Genomics of Invertebrate Olfaction......Page 2508<br>Introduction......Page 2509<br>An Overview of Invertebrate Chemosensory Organs and Their Molecular Components......Page 2510<br>Comparative evolutionary genomics......Page 2513<br>Functional genomics of Obps......Page 2517<br>Insect Chemosensory Proteins......Page 2518<br>Functional genomics of Csps......Page 2519<br>Odorant Receptors......Page 2520<br>Drosophila odorant receptors......Page 2521<br>Anopheles odorant receptors......Page 2522<br>Lepidopteran odorant receptors......Page 2523<br>DOr83b family......Page 2524<br>Str/srh gene families......Page 2525<br>Signaling Cascade......Page 2526<br>Insects......Page 2527<br>Ion Channels......Page 2528<br>The Caenorhabditis elegans Calcineurin TAX-6......Page 2529<br>Conclusion and Perspectives......Page 2530<br>References......Page 2531<br>Glossary......Page 2538<br>Sensory Neurons......Page 2539<br>Basal Cells......Page 2541<br>Ongoing Olfactory Neurogenesis......Page 2542<br>Toxic Injury to the Olfactory Epithelium......Page 2544<br>Effects of Viral Infection on the Olfactory Epithelium......Page 2545<br>Globose Basal Cells Are the Only Population for Which Functional Heterogeneity Has Been Demonstrated......Page 2546<br>Are Some Cells Among the Globose Basal Cells Tissue Stem Cells of the Olfactory Epithelium?......Page 2548<br>Normal Organization of the Axonal Projection from the Olfactory Epithelium onto the Olfactory Bulb......Page 2549<br>Organization of the Projection Following Recovery from Injury to the Periphery......Page 2551<br>Functional Recovery Following Epithelial Lesion or Nerve Transection......Page 2552<br>Conclusions and Unanswered Questions......Page 2553<br>References......Page 2554<br>Glossary......Page 2560<br>The Mammalian Olfactory Bulb Network......Page 2561<br>Building Neuronal Networks during Adulthood......Page 2562<br>Maturation and Functional Integration......Page 2563<br>Functions of Newly Formed Interneurons in the Olfactory Bulb......Page 2564<br>Properties Conferred by Neurons Generated in Adulthood......Page 2565<br>Ethological Relevance of Adult Neurogenesis......Page 2566<br>Concluding Remarks......Page 2567<br>Further Reading......Page 2568<br>Relevant Websites......Page 2569<br>Glossary......Page 2570<br>Olfactory Epithelium......Page 2572<br>Olfactory Nerve Layer......Page 2573<br>Glomerular Layer......Page 2574<br>Subependymal Zone - Rostral Migratory Stream......Page 2575<br>Tufted cells......Page 2576<br>Blanes cells......Page 2577<br>Glia......Page 2578<br>Glomerular Layer......Page 2579<br>External Plexiform Layer......Page 2580<br>Lateral Olfactory Tract and Olfactory Cortex......Page 2582<br>Acknowledgments......Page 2583<br>References......Page 2584<br>Physiology of the Main Olfactory Bulb......Page 2588<br>Projections of Olfactory Receptor Neurons to Main Olfactory Bulb......Page 2589<br>Neurophysiological Properties of Glomerular Layer Neurons......Page 2590<br>ET cells......Page 2591<br>PG cells......Page 2594<br>ON glutamatergic synaptic input to JG and mitral/tufted cells......Page 2595<br>Spillover of dendritically released glutamate......Page 2598<br>ET and mitral/tufted cell dendrodendritic input to PG and SA cells......Page 2599<br>GABA and GABAB receptors......Page 2600<br>ET and mitral/tufted cell dendrodendritic interactions with PG and SA cells......Page 2602<br>Neuromodulation in the GL......Page 2604<br>Tufted Cells......Page 2606<br>Spontaneous Discharge and Intrinsic Membrane Properties......Page 2607<br>Dendritic Spike Propagation......Page 2609<br>Neuron Types of the GCL......Page 2610<br>Neurophysiology of GCs......Page 2611<br>Neurophysiology of Blanes Cells......Page 2612<br>Self-inhibition......Page 2613<br>Role of Ca2+ influx through N-methyl d-aspartate receptors and voltage-dependent Ca2+ channels......Page 2614<br>Neurophysiology of Primary Olfactory Cortical Inputs to Main Olfactory Bulb......Page 2615<br>Theta rhythm......Page 2616<br>Synchrony among JG cells......Page 2617<br>Synchrony among mitral cells......Page 2618<br>Oscillations, Synchrony and Odor Coding......Page 2619<br>Cholinergic Inputs to MOB......Page 2620<br>Noradrenergic Input to MOB......Page 2621<br>Serotonergic (5-HT) Input to MOB......Page 2622<br>References......Page 2623<br>Further Reading......Page 2632<br>Introduction......Page 2634<br>Functions of Sensory Cortex......Page 2635<br>Cortical Neurocircuitry......Page 2636<br>Cortical-Cortical Connectivity......Page 2637<br>Piriform Cortex Synaptic Physiology......Page 2639<br>Odorant Intensity......Page 2640<br>Odorant Quality......Page 2641<br>Sensory Gating......Page 2646<br>Odorant Familiarity and Meaning......Page 2648<br>Odor Discrimination......Page 2650<br>Background Segmentation......Page 2651<br>References......Page 2652<br>Introduction......Page 2654<br>Filtering and Contrast Enhancement......Page 2655<br>Mechanisms Underlying Oscillations and Spike Synchronization......Page 2659<br>Detailed Biophysical Models of OB Neurons......Page 2660<br>Conclusions......Page 2661<br>References......Page 2662<br>Combinatorial Coding......Page 2666<br>Chemotopic Progressions......Page 2667<br>Predictive Value of Activity Maps......Page 2668<br>References......Page 2669<br>Further Reading......Page 2670<br>Insect Olfaction......Page 2672<br>Glossary......Page 2673<br>Introduction......Page 2676<br>Antennal Lobe Glomeruli......Page 2677<br>Glomerular Atlas of the Antennal Lobe......Page 2678<br>Projection of olfactory sensory neurons into the antennal lobe......Page 2679<br>Olfactory sensory neuron odor responses......Page 2680<br>Olfactory sensory neuron transmitters......Page 2681<br>Morphology of local neurons......Page 2682<br>Physiology of local neurons......Page 2683<br>Projection neuron morphology and tracts......Page 2684<br>Projection neuron numbers......Page 2685<br>Feedback Neurons and Biogenic Amines......Page 2686<br>Functional Organization in the Antennal Lobe......Page 2688<br>Odor-Evoked Activity Across Glomeruli......Page 2689<br>Contrast enhancement in the antennal lobe......Page 2690<br>Temporal activity structures......Page 2691<br>Coding Odor Concentration and Odor Mixtures......Page 2692<br>Sexual pheromones......Page 2693<br>Carbon dioxide......Page 2694<br>Effects of Memory......Page 2695<br>Kenyon Cells......Page 2696<br>Projection Neuron Input......Page 2697<br>Odor-Evoked Activity and Processing......Page 2698<br>Effects of Memory......Page 2699<br>Cellular and Functional Organization of the Lateral Protocerebrum......Page 2700<br>Odor Learning......Page 2701<br>Social Communication - Pheromones......Page 2702<br>Navigation - Innate Odors......Page 2703<br>Limitations and Potential of Using Insects to Study Olfactory Coding......Page 2704<br>References......Page 2705<br>Relevant Websites......Page 2716<br>Glossary......Page 2718<br>Distribution of Odorants in the Environment......Page 2719<br>Diffusion versus Turbulent Diffusion......Page 2720<br>Temporal/Spatial Structure......Page 2722<br>Quantity......Page 2723<br>Spatial comparisons of odor concentration (bilaterally symmetrical sensors)......Page 2724<br>Importance of Active Sampling Behaviors to Odor Detection and Processing......Page 2725<br>Conclusions......Page 2726<br>References......Page 2727<br>Glossary......Page 2730<br>Introduction......Page 2731<br>A Brief Historical Perspective......Page 2732<br>Basic Anatomical Organization......Page 2733<br>Zonal Segregation of the Vomeronasal System......Page 2735<br>Molecular Physiology of Neuronal Sensing......Page 2736<br>Signal Transduction Mechanisms......Page 2738<br>Stimulus access......Page 2741<br>Urinary volatiles......Page 2742<br>Major histocompatibility complex peptide ligands......Page 2743<br>Proteins......Page 2744<br>Inputs from the Vomeronasal Organ......Page 2745<br>Functional Organization of the Accessory Olfactory Bulb......Page 2746<br>Interneurons......Page 2748<br>Outputs of the Accesory Olfactory Bulb......Page 2749<br>Mechanisms of Behavior......Page 2751<br>Male Aggression to Intruder Males......Page 2752<br>Timing of Puberty, Cyclicity, and Ovulation in Females......Page 2753<br>Pregnancy Block and Individual Recognition in Females: The Bruce Effect......Page 2754<br>References......Page 2755<br>Introduction......Page 2762<br>On the Size of the Repertoires......Page 2763<br>Monogenic and Monoallelic V1r Expression......Page 2764<br>Genomic Parallels and Divergences with V1rs......Page 2765<br>References......Page 2766<br>Glossary......Page 2770<br>Introduction......Page 2771<br>Olfactometers......Page 2773<br>Jars......Page 2775<br>The Assumed Threshold Model......Page 2776<br>Measuring the Threshold Model......Page 2777<br>Nonolfactory Detection of Airborne Chemicals......Page 2778<br>Reported Absolute Thresholds......Page 2779<br>Olfactory Discrimination......Page 2783<br>Discriminating between Different Concentrations......Page 2784<br>Discriminating between Different Odorants......Page 2785<br>Speed of Olfactory Discrimination......Page 2787<br>Olfactory Identification......Page 2788<br>Language and Olfactory Identification......Page 2789<br>Identification of an Odor Rather than Its Parts......Page 2790<br>Nostril-Specific Odor Tuning......Page 2791<br>Identifying Odor Characteristics......Page 2794<br>Explicit similarity methods......Page 2795<br>Implicit similarity methods......Page 2796<br>References......Page 2798<br>Relevant Websites......Page 2804<br>Disorders of Taste and Smell......Page 2806<br>Glossary......Page 2807<br>Introduction......Page 2811<br>Gustatory Pathways......Page 2812<br>Symptoms of Chemosensory Dysfunction......Page 2813<br>Medical History and Examination......Page 2814<br>Causes of Chemosensory Dysfunction......Page 2815<br>Allergies and Rhinosinusitis......Page 2817<br>Head Trauma......Page 2818<br>Tumors and Central Nervous System Lesions......Page 2819<br>Congenital and Inherited Disorders......Page 2821<br>Kallmann’s syndrome......Page 2822<br>Psychiatric Disorders......Page 2823<br>Seasonal affective disorder......Page 2824<br>Alzheimer’s disease......Page 2825<br>Multiple sclerosis......Page 2826<br>Progressive supranuclear palsy......Page 2827<br>Epilepsy......Page 2828<br>Treatment of Chemosensory Disorders......Page 2829<br>Summary......Page 2830<br>References......Page 2831<br>Volume 5 - Pain ......Page 2835<br>Introduction to Volume 5......Page 2840<br>Noxious Stimulus......Page 2842<br>References......Page 2844<br>Pain Theories......Page 2846<br>References......Page 2850<br>Glossary......Page 2852<br>Introduction......Page 2853<br>Light Microscopic Structure......Page 2855<br>Ultrastructure......Page 2856<br>Skin......Page 2858<br>Light microscopy......Page 2859<br>Electron microscopy......Page 2860<br>Light microscopy......Page 2861<br>Electron microscopy......Page 2862<br>Muscle......Page 2863<br>Tendon......Page 2865<br>Ultrastructure of articular free nerve endings......Page 2866<br>Toothache......Page 2868<br>Light and electron microscopy......Page 2869<br>Neuropeptide content and equipment with receptor molecules......Page 2872<br>Light and electron microscopy......Page 2873<br>Visceral pain......Page 2874<br>General Remarks......Page 2875<br>Neuropeptides in Afferent Units of Different Tissues......Page 2876<br>Neuropeptides in Nociceptors and Other Types of Free Nerve Ending......Page 2877<br>Neurogenic Inflammation......Page 2878<br>References......Page 2879<br>Further Reading......Page 2882<br>Glossary......Page 2884<br>Introduction......Page 2885<br>Structure Dictates Function: The Anatomy of the Nociceptor......Page 2886<br>Efferent function......Page 2888<br>Slow axonal transport......Page 2889<br>P2X adenosine triphosphate-gated ion channels......Page 2890<br>Proton-gated ion channels......Page 2891<br>Transient receptor potential ion channels......Page 2892<br>Ion Channels Influencing Passive Membrane Properties: Membrane Resistance......Page 2894<br>Action potential downstroke......Page 2895<br>After potential......Page 2896<br>Action potential threshold......Page 2897<br>G-protein-coupled receptors......Page 2898<br>Neurotrophin receptors......Page 2899<br>Shared Modalities and Polymodality......Page 2900<br>Functional Interactions between Nociceptor Proteins......Page 2901<br>Inflammation-Induced Changes in Nociceptor Sensory function - Inflammatory Pain......Page 2902<br>Nerve injury-induced changes in transduction......Page 2903<br>Changes in membrane stability......Page 2904<br>Conclusion......Page 2905<br>References......Page 2906<br>Epidemiology and Course of Herpes Zoster and Postherpetic Neuralgia......Page 2916<br>Mechanisms of Acute Zoster Pain......Page 2918<br>Pathophysiology of Postherpetic Neuralgia......Page 2919<br>References......Page 2920<br>Relevant Websites......Page 2922<br>Precipitating Factors......Page 2924<br>Ectopic Mechanosensitivity......Page 2925<br>Ongoing Pain, Tender-Points, and Other Sensitivities......Page 2926<br>Resonance......Page 2927<br>References......Page 2928<br>How Do Sodium Channels Work?......Page 2930<br>Nav1.3 and Neuropathic Pain......Page 2933<br>Nav1.8 and Nociception......Page 2934<br>The Diversity of Sodium Channel Subtypes......Page 2935<br>Further Reading......Page 2936<br>Glossary......Page 2938<br>C-Fiber Nociceptors......Page 2939<br>A-Fiber Nociceptors......Page 2943<br>Classification of Nociceptors Based on Molecular Markers......Page 2944<br>Efferent and Trophic Functions of Nociceptors......Page 2945<br>Heat pain from glabrous skin is signaled by C-fiber nociceptors......Page 2946<br>First pain to heat on hairy skin is signaled by type II A-fiber nociceptors......Page 2947<br>Capsaicin-Evoked Pain......Page 2949<br>Hyperalgesia to mechanical stimuli......Page 2950<br>Inflammatory mediators and nociceptor sensitization......Page 2952<br>Central mechanisms of secondary hyperalgesia......Page 2953<br>References......Page 2954<br>Introduction and Definition of Itch......Page 2956<br>Is Itch Distinct from Pain?......Page 2957<br>Peripheral and Spinal Mechanisms of Itch......Page 2958<br>Alloknesis (Itchy Skin) and Sensitization......Page 2960<br>Animal Models of Itch......Page 2961<br>Itch Mediators......Page 2962<br>Acknowledgments......Page 2963<br>References......Page 2964<br>Cloning of TRPV1 and its characterization......Page 2968<br>Reduction of temperature threshold for TRPV1 activation: A mechanism for inflammatory pain......Page 2969<br>TRPM8......Page 2970<br>Conclusion......Page 2971<br>References......Page 2972<br>The Development of Nociceptors and Their Peripheral and Spinal Connections......Page 2974<br>The Development of Spinal Nociceptive Circuits......Page 2976<br>Pain and the Developing Cortex......Page 2977<br>The Development of Descending Pain Pathways......Page 2978<br>Development of Neurotransmitter/Receptor Function in Descending Pathways......Page 2979<br>Concluding Remarks......Page 2981<br>References......Page 2982<br>Modular Organization of Sensorimotor Circuits in the Spinal Cord......Page 2988<br>Functional Adaptation of Sensorimotor Circuits During Development......Page 2990<br>References......Page 2993<br>Further Reading......Page 2995<br>Modifying a Child’s Pain......Page 2996<br>Guidelines for Treating Acute Pain......Page 2998<br>Guidelines for Treating Chronic Pain......Page 3002<br>References......Page 3004<br>Further Reading......Page 3005<br>Microarray Analysis of Whole Dorsal Root Ganglion from the Spinal Nerve Ligation Model......Page 3006<br>Microarray Analysis of Subpopulations of Neurons Isolated from Dorsal Root Ganglion......Page 3008<br>Evaluation of Additional Neuropathic Pain Models by Microarray......Page 3010<br>The Strengths and Limitations of Microarray Analysis for Pain Research......Page 3011<br>The Genetics of Pain......Page 3012<br>References......Page 3013<br>Glossary......Page 3016<br>Identification of nociceptors in diverse phyla......Page 3017<br>Conserved mechanisms of nociceptive transduction......Page 3018<br>Common nociceptive functions mediated by diverse neural circuits......Page 3019<br>Nociceptive Plasticity and Sensitization......Page 3020<br>Local protein synthesis and primitive memory mechanisms......Page 3021<br>Cognitive and Emotional Responses to Noxious Stimulation Differ across Species......Page 3022<br>References......Page 3023<br>MC1R and the Melanocortin-1 Receptor......Page 3026<br>MC1R and Analgesia......Page 3027<br>MC1R and Pain......Page 3029<br>References......Page 3031<br>Glossary......Page 3034<br>Introduction......Page 3035<br>Reactions of the Sympathetic Nervous System in Pain......Page 3037<br>Visceral Afferents, Autonomic Nervous System, and Pain......Page 3039<br>Hyperalgesia and Sympathetically Mediated Changes in Referred Zones During Visceral Pain......Page 3040<br>Clinical Background: Sympathetically Maintained Pain......Page 3042<br>Sympathetically Maintained Pain Following Nerve Lesion Simulated in Behavioral Animal Models......Page 3043<br>Coupling between lesioned postganglionic and afferent nerve terminals......Page 3046<br>Coupling in the dorsal root ganglion and collateral sprouting following peripheral nerve lesion......Page 3047<br>Synopsis......Page 3049<br>Changes of neurovascular transmission and development of hyperreactivity of blood vessels......Page 3050<br>Sensitization of nociceptors mediated by sympathetic terminals independent of excitation and release of noradrenaline......Page 3052<br>Nerve growth factor......Page 3053<br>Sympatho-adrenal system and nociceptor sensitization......Page 3054<br>The Complex Regional Pain Syndrome Type I as Model......Page 3057<br>Sympathetic Nervous System and Acute Experimental Inflammation......Page 3059<br>References......Page 3062<br>Further Reading......Page 3066<br>Introduction......Page 3068<br>Sympathetically Maintained Pain......Page 3069<br>Sympathetic Block for Diagnosis......Page 3070<br>Local Anesthetic Sympathetic Blocks......Page 3071<br>Systemic Alpha-Adrenergic Blockade......Page 3072<br>Local Anesthetic Sympathetic Blocks and Intravenous Regional Sympathetic Blockade......Page 3073<br>Surgical Sympathectomy......Page 3074<br>References......Page 3075<br>Further Reading......Page 3076<br>Glossary......Page 3078<br>The Discovery......Page 3079<br>Formation of Perineuronal Rings or Baskets......Page 3080<br>Underlying Cellular Mechanisms......Page 3081<br>Other Forms of Sympathetic Plasticity after Nerve Injury......Page 3082<br>References......Page 3083<br>Glossary......Page 3086<br>Thoracic Visceral Organs......Page 3087<br>Abdominal Vagal Afferents, Protection of the Body, and Illness Responses......Page 3088<br>References......Page 3090<br>Sex Differences in Responses to Pain Treatment......Page 3094<br>Mechanisms Underlying Sex Differences in Pain......Page 3095<br>References......Page 3096<br>Glossary......Page 3100<br>Neurotrophins and Development of Nociceptors......Page 3101<br>Acute Changes......Page 3103<br>Mechanisms of Nerve Growth Factor Action in the Skin......Page 3104<br>Acute Sensitization by Nerve Growth Factor of the Response of Dissociated Nociceptors......Page 3105<br>TrkA Signaling Pathways Responsible for Acute Effects of Nerve Growth Factor......Page 3106<br>p75 Receptor Influence on Sensory Neuron Function......Page 3107<br>TRPV1 Receptors......Page 3108<br>Na+ Channels......Page 3109<br>Joint Receptors......Page 3110<br>Role of Brain-Derived Neurotrophic Factor, Neurotrophin-4, and Neurotrophin-3 in Peripheral Sensitization......Page 3111<br>Neurotrophins and Neuropathic Pain......Page 3112<br>Discussion, Conclusions, and Open Questions......Page 3113<br>References......Page 3114<br>Glossary......Page 3120<br>Overall Organization of Dorsal Horn: Rexed Lamination......Page 3121<br>Types of Afferents, Neurochemistry, and Termination in Spinal Cord......Page 3124<br>Synaptic Arrangements of Primary Afferents......Page 3125<br>Receptors on Primary Sensory Fibers......Page 3127<br>Dorsal Horn Neurons......Page 3129<br>Correspondence with function......Page 3130<br>Expression of NK-1r in subpopulations of lamina I neurons......Page 3132<br>Lamina II Neurons......Page 3133<br>Laminae III-VI......Page 3134<br>Neurokinins......Page 3135<br>Enkephalins......Page 3136<br>Glutamate......Page 3137<br>Glycine......Page 3138<br>Other classical transmitters and other neuropeptides......Page 3139<br>Identified Neuronal Circuits......Page 3140<br>Conclusion and Future Directions......Page 3142<br>References......Page 3143<br>Organization of the Spinal Cord......Page 3152<br>Laminae I and II (the Substantia Gelatinosa)......Page 3153<br>Modality of Input to Lamina I......Page 3154<br>Receptive Field Characteristics......Page 3155<br>Projections and Function of Lamina I Neurons......Page 3156<br>Receptive Field Characteristics......Page 3157<br>Projections and Function of Outer Lamina II Neurons......Page 3160<br>Lamina III......Page 3161<br>The Ventral Horn......Page 3162<br>Somatotopic Organization......Page 3163<br>Intrinsic Properties of Spinal Dorsal Horn Neurons......Page 3164<br>Gap Firing Neurons......Page 3166<br>Relationship between Intrinsic Firing Patterns and Physiological Types of Dorsal Horn Neurons......Page 3167<br>References......Page 3168<br>Glossary......Page 3172<br>General......Page 3173<br>Plasticity......Page 3174<br>Perturbance of the Basic Somesthetic Activity by a Painful Focus......Page 3176<br>Multiple or Vast Painful Foci......Page 3177<br>References......Page 3178<br>Glossary......Page 3180<br>Heat injury......Page 3182<br>Peripheral nerve stimulation......Page 3183<br>Peripheral nerve injury......Page 3184<br>Spinal cord injury......Page 3185<br>Neuropeptides......Page 3186<br>Excitatory amino acids......Page 3187<br>Neurotrophins......Page 3190<br>Second messengers......Page 3191<br>Transcription factors......Page 3194<br>Excitatory amino acid receptors......Page 3195<br>Other receptors......Page 3196<br>Ion channels......Page 3197<br>Microglia......Page 3199<br>Neuron-glial interactions......Page 3200<br>Cell death......Page 3201<br>Abeta fibers......Page 3202<br>References......Page 3203<br>Relevant Website......Page 3221<br>Glycinergic Innervation in the Spinal Cord Dorsal Horn......Page 3222<br>Glycine Receptors in the Spinal Control of Inflammatory Pain......Page 3223<br>Glycine Receptors in the Spinal Control of Neuropathic Pain......Page 3224<br>References......Page 3225<br>Further Reading......Page 3226<br>Pain Following Spinal Cord Injury......Page 3228<br>Clinical Characteristics of Spinal Injury Pain......Page 3229<br>The Research Challenge of Spinal Injury Pain......Page 3230<br>Pathophysiology of Spinal Cord Injury......Page 3231<br>Mechanism(s) of Pain Following Spinal Injury......Page 3232<br>Loss of Inhibitory Tone......Page 3233<br>Pattern Generators of Pain......Page 3234<br>Cell Signaling Pathways: Synaptic Plasticity and Functional State......Page 3235<br>Future Directions......Page 3236<br>References......Page 3237<br>Further Reading......Page 3240<br>Introduction......Page 3242<br>Induction of Long-Term Potentiation in Pain Pathways......Page 3243<br>Signal Transduction Pathways......Page 3244<br>Prevention of Long-Term Potentiation......Page 3245<br>References......Page 3246<br>Glossary......Page 3248<br>Proinflammatory Cytokines......Page 3249<br>Tumor necrosis factor-alpha......Page 3250<br>Interleukin-1beta......Page 3251<br>Interleukin-6......Page 3252<br>Chemokines......Page 3253<br>Nerve Growth Factor......Page 3254<br>Other Mediators: Bradykinin......Page 3255<br>Anti-Inflammatory Cytokines......Page 3256<br>Opioid receptor signaling in sensory neurons......Page 3257<br>Proopiomelanocortin-derived opioid peptides......Page 3258<br>Migration of opioid-containing immune cells to inflamed tissue......Page 3259<br>Analgesic effects of corticotropin releasing factor, interleukin-1beta, and noradrenaline......Page 3261<br>Endogenous opioid analgesia......Page 3262<br>Perspectives......Page 3263<br>References......Page 3264<br>Relevant Website......Page 3268<br>Glial Activation in Response to Neurotransmitters......Page 3270<br>Glial Activation by Unique Neuron-to-Glia Signals......Page 3271<br>Beyond Neuropathic Pain: Glial Activation in Response to Opioids......Page 3272<br>References......Page 3273<br>Introduction......Page 3276<br>General Features......Page 3279<br>Neurochemical and Molecular Properties of Trigeminal Ganglion Neurons......Page 3280<br>Central Aspects of Trigeminal Organization......Page 3282<br>Somatotopy......Page 3283<br>Relationship to the Autonomic Nervous System......Page 3284<br>Neurochemical Markers......Page 3285<br>Efferent Projections......Page 3287<br>Functional Considerations......Page 3288<br>Chronic Craniofacial Pain......Page 3289<br>References......Page 3291<br>Further Reading......Page 3301<br>Migraine - Explaining the Clinical Features......Page 3302<br>Migraine Aura......Page 3303<br>Sensitization and Migraine......Page 3304<br>The Trigeminocervical Complex......Page 3305<br>Brain Imaging in Humans......Page 3307<br>What is Migraine?......Page 3308<br>References......Page 3309<br>Glossary......Page 3310<br>Normal Teeth/Acute Pain......Page 3311<br>Dental Neuropathic Pain......Page 3313<br>Tooth Pain: Diagnosis and Management......Page 3314<br>References......Page 3315<br>Ascending Pathways: Anatomy and Physiology......Page 3318<br>Glossary......Page 3319<br>Defining Nociceptive Ascending Pathways......Page 3320<br>The Spinothalamic System......Page 3321<br>Spinal Laminae of Origin and Sites of Termination......Page 3322<br>Response properties......Page 3323<br>Spinal laminae of origin and sites of termination......Page 3324<br>Structural types of neurons involved......Page 3325<br>Neurotransmitters......Page 3326<br>Pathways driven at the target......Page 3327<br>Spinal laminae of origin and sites of termination......Page 3328<br>Response properties......Page 3329<br>Structural types of neurons involved......Page 3330<br>Pathways driven at the target......Page 3332<br>Spinal laminae of origin and sites of termination......Page 3333<br>Pathways driven at the target......Page 3334<br>Spinal laminae of origin and sites of termination......Page 3335<br>Spinal location of ascending fibers......Page 3336<br>Response properties......Page 3337<br>Spinal laminae of origin and sites of termination......Page 3338<br>Response properties......Page 3341<br>Spinodiencephalic Pathways......Page 3342<br>Spinal laminae of origin and sites of termination......Page 3343<br>Spinal location of ascending fibers......Page 3345<br>Response properties......Page 3346<br>Spinal laminae of origin and sites of termination......Page 3348<br>Structural types of neurons involved......Page 3349<br>Pathways driven at the target......Page 3350<br>Spinal laminae of origin and sites of termination......Page 3351<br>Spinal location of ascending fibers......Page 3352<br>Thelencephalic Targets of Spinal Ascending Fibers......Page 3353<br>Spinal Laminae of Origin......Page 3354<br>Multiple Parallel Ascending Pathways......Page 3355<br>Spinal Neuronal Populations at the Origin of Nociceptive Ascending Pathways......Page 3357<br>Nociceptive Ascending Pathways as Part of a Complex Nociceptive Integration System......Page 3358<br>References......Page 3359<br>Glossary......Page 3368<br>Anterolateral cordotomy......Page 3369<br>Limited midline myelotomy......Page 3370<br>Spinothalamic Tract......Page 3371<br>Effects of interruption of the dorsal column or a lesion of dorsal column nuclei on responses of brainstem and thalamic neurons to noxious visceral stimuli......Page 3372<br>Effects of a dorsal column lesion on behavioral responses......Page 3374<br>Blockade of synaptic relay in sacral cord by morphine or 6-cyano-7-nitroquinoxaline-2,3-dione......Page 3375<br>Projections of the postsynaptic dorsal column pathway......Page 3377<br>Fos expression in PSDC neurons after noxious visceral stimulation......Page 3379<br>Descending Facilitation......Page 3380<br>References......Page 3381<br>Glossary......Page 3384<br>Visceral Sensation......Page 3385<br>Visceral Nociceptors and Sensory Endings......Page 3386<br>Chemical Character of Visceral Sensory Neurons......Page 3388<br>Spinal nerves......Page 3390<br>Spinal pathways and supraspinal terminations......Page 3391<br>Functional Basis of Visceral Pain......Page 3392<br>Afferent fiber recordings......Page 3393<br>Information acquired in vitro......Page 3394<br>Gene deletions, visceral pain, and mechanosensation......Page 3397<br>Sleeping (Silent) Nociceptors......Page 3398<br>Visceral Chemo-Nociception......Page 3399<br>Visceral Hypersensitivity......Page 3400<br>Sensitization and Excitability of Visceral Nociceptors......Page 3401<br>Central Sensitization......Page 3402<br>Central Modulation of Visceral Pain......Page 3404<br>Summary......Page 3405<br>References......Page 3406<br>Further Reading......Page 3409<br>Clinical Presentation and Epidemiology......Page 3412<br>Visceral Hypersensitivity......Page 3413<br>Peripheral Up-Regulation of Visceral Afferent Sensitivity......Page 3414<br>Spinal and Supraspinal Up-Regulation of Visceral Afferent Sensitivity......Page 3415<br>References......Page 3416<br>Introduction......Page 3420<br>Variables Associated with the Severity of Labor Pain......Page 3421<br>Analgesia for Labor and Delivery......Page 3422<br>Future Aspects......Page 3423<br>References......Page 3424<br>Sensor Molecules Expressed in Urothelium Which Could Contribute to Bladder Pain......Page 3426<br>Response to Stimuli: Transducer Function of Urothelial Cells......Page 3428<br>How Might Urothelial Cells Influence Pain Processes?......Page 3429<br>References......Page 3430<br>The Brainstem and Nociceptive Modulation......Page 3434<br>Functional Characterization of the Periaqueductal Gray-Rostral Ventromedial Medulla Pain-Modulating System......Page 3435<br>Pain Modulation as Part of Adaptive Responses to Behavioral and Physiological Challenges......Page 3436<br>The Periaqueductal Gray......Page 3437<br>Afferents to the Periaqueductal Gray......Page 3438<br>Columnar Organization of the Periaqueductal Gray......Page 3439<br>Endogenous opioids......Page 3440<br>Opioid tolerance and dependence......Page 3442<br>Substance P......Page 3444<br>The Rostral Ventromedial Medulla and Facilitation of Nociception......Page 3445<br>Physiological classification of rostral ventromedial medulla neurons based on reflex-related activity......Page 3446<br>Role of on- and off-cells in pain modulation......Page 3448<br>Role of neutral cells......Page 3449<br>Gamma-aminobutyric acid and glutamate: the off-cell pause and on-cell burst......Page 3450<br>Opioid actions in the rostral ventromedial medulla......Page 3451<br>Norepinephrine......Page 3452<br>Nociceptin/orphanin FQ......Page 3453<br>Behavioral state control: anesthesia and sleep/waking cycle......Page 3454<br>Environmental analgesia......Page 3455<br>Conclusion......Page 3456<br>References......Page 3457<br>Active versus Passive Emotional Coping......Page 3468<br>Dorsolateral periaqueductal gray......Page 3469<br>Dorsolateral periaqueductal gray......Page 3471<br>References......Page 3474<br>Further Reading......Page 3475<br>Introduction......Page 3476<br>Ventroposterior nuclei......Page 3477<br>Posterior part of the ventromedial nucleus......Page 3478<br>Central lateral nucleus......Page 3479<br>Comparative Physiological Findings......Page 3480<br>Ventroposterior Nuclei......Page 3481<br>Posterior Thalamus and Posterior Part of the Ventromedial Nucleus......Page 3482<br>Medial Dorsal Nucleus......Page 3484<br>Direct Physiological Evidence in Humans......Page 3485<br>Innocuous Cooling-Responsive Neurons......Page 3486<br>Stimulation-Induced Pain and Temperature Sensations......Page 3487<br>Physiological Observations in Central Pain Patients......Page 3488<br>Effects of Thalamic Lesions on Pain......Page 3489<br>Pharmacology......Page 3490<br>References......Page 3491<br>Glossary......Page 3496<br>The Spinothalamic Tract......Page 3497<br>Lateral Thalamic Nuclei......Page 3498<br>Parasylvian Cortex and Pain Memory......Page 3504<br>References......Page 3506<br>Nociceptive Processing in the Cerebral Cortex......Page 3510<br>Introduction......Page 3511<br>Methods to Study Nociceptive Processing in the Human Cerebral Cortex......Page 3512<br>The Primary Somatosensory Cortex......Page 3514<br>Parasylvian Cortex: the Operculo-Insular Region......Page 3515<br>The frontal operculum......Page 3516<br>The Posterior Parietal Cortex......Page 3517<br>The Cingulate Cortex......Page 3518<br>Location and Quality of Phasic Pain......Page 3519<br>Attention and Distraction Effects on Pain-Evoked Cortical Activity......Page 3521<br>Hypnosis and pain-evoked cortical activity......Page 3522<br>Opiates......Page 3523<br>Overview Regarding the Role of the Cortex in Acute Pain Perception......Page 3524<br>Studying Brain Activity in Chronic Pain with Nonspecific Painful Stimuli......Page 3525<br>Clinical Pain Conditions Studied by Stimulation and the Role of the Cortex......Page 3526<br>Irritable bowel syndrome......Page 3527<br>Spontaneous Pain as a Confound in Assessing Brain Activity......Page 3528<br>Neuropathic Pain......Page 3530<br>Overview Regarding the Role of the Cortex in Chronic Pain Perception......Page 3531<br>References......Page 3532<br>Definition......Page 3540<br>Peripheral Mechanisms of Phantom Limb Pain......Page 3541<br>The Spinal Cord......Page 3542<br>Supraspinal Changes......Page 3543<br>Implications for the Treatment and Prevention of Phantom Limb Pain......Page 3544<br>References......Page 3545<br>Further Reading......Page 3546<br>Glossary......Page 3548<br>The Insula as the Fifth Lobe of the Brain......Page 3549<br>The Insula as a Node in a Distributed Cortical Network......Page 3550<br>Recording and Stimulation of the Human Insula Are Justified only in the Context of Presurgical Evaluation of Epilepsy......Page 3551<br>The Laser Stimulus......Page 3552<br>Intracortical Insular Recordings......Page 3553<br>The Challenge of Insular Stimulation......Page 3555<br>References......Page 3556<br>Relevant Websites......Page 3557<br>Anatomical Location......Page 3558<br>Connections of the Rostral Agranular Insular Cortex......Page 3559<br>Relationship with Adjacent Cortical Regions......Page 3560<br>From Rats to Humans......Page 3561<br>Further Reading......Page 3562<br>Descending Control Mechanisms......Page 3564<br>Introduction......Page 3565<br>Midbrain PAG matter......Page 3566<br>PAG-RVM-spinal dorsal horn circuitry......Page 3567<br>A7 cell column......Page 3568<br>Lateral reticular nucleus......Page 3569<br>Cerebral cortex......Page 3570<br>Opioid peptides......Page 3571<br>Orphanin FQ, nocistatin, and neuropeptideFF......Page 3572<br>Noradrenaline......Page 3573<br>Serotonin......Page 3574<br>Gamma-aminobutyric acid and glycine......Page 3575<br>Brain-derived neurotrophic factor......Page 3576<br>Acetylcholine......Page 3577<br>Summary......Page 3578<br>Pain modulatory neurons......Page 3579<br>Facilitatory effect......Page 3580<br>Plasticity of Descending Pathways......Page 3581<br>Descending inhibition in persistent pain......Page 3582<br>Descending facilitation in persistent pain......Page 3583<br>Time-dependent shift in descending control......Page 3584<br>Phenotypic changes in pain modulatory neurons......Page 3586<br>Molecular mechanisms of activity-dependent plasticity in descending pathways......Page 3587<br>Significance of Altered Descending Modulation in Persistent Pain......Page 3588<br>Opioids......Page 3589<br>References......Page 3590<br>Further Reading......Page 3602<br>Diffuse Noxious Inhibitory Controls (DNIC)......Page 3604<br>A Spinally Mediated Process......Page 3605<br>A Spinally Mediated Process Involving Supraspinal Structures......Page 3609<br>The Role of Wide-Dynamic-Range Neurons......Page 3610<br>References......Page 3613<br>Introduction......Page 3616<br>Abnormal Response to Stressors......Page 3617<br>Temporal Summation of Second Pain (Wind-Up)......Page 3618<br>Trigger Points......Page 3619<br>Treatment of Fibromyalgia......Page 3620<br>References......Page 3621<br>Glossary......Page 3624<br>Definition, Epidemiology, and Relevance......Page 3625<br>Sleep Fragmentation and Deprivation......Page 3626<br>Nociception - Pain Perception during Sleep......Page 3627<br>Sleep Arousal: Brain and Autonomic Activation......Page 3630<br>Circular Relation between Pain and Poor Sleep and Putative Consequence on Health Cost......Page 3631<br>References......Page 3632<br>Relevant Website......Page 3635<br>Introduction......Page 3636<br>Opioids and Their Receptors......Page 3637<br>Kinins and Their Receptors......Page 3639<br>Cannabinoids and Their Receptors......Page 3640<br>Prostanoids and Receptors......Page 3642<br>Cytokines, Chemokines, and Their Receptors......Page 3643<br>Adrenoceptors......Page 3644<br>Glutamate Regulation and Glutamate Receptors......Page 3645<br>Ligand-Gated Channels......Page 3646<br>P2X Receptors......Page 3647<br>Sodium Channels......Page 3648<br>Calcium Channels......Page 3649<br>Neurotrophins and Their Receptors......Page 3650<br>Botulinum Toxin......Page 3651<br>References......Page 3652<br>Further Reading......Page 3659<br>-Opioid-Receptor-Mediated Pain Processing......Page 3662<br>kappa-Opioid-Receptor-Mediated Processing......Page 3665<br>-Opioid-Receptor-Mediated Processing......Page 3666<br>Opioid Receptor-like (ORL-1, NOP Receptor)-Mediated Processing......Page 3667<br>References......Page 3668<br>Introduction......Page 3674<br>Injury-Induced Sensitization of Peripheral Nerves and Neuropathic Pain......Page 3675<br>Role of Peripheral Nerve Degeneration in Neuropathic Pain......Page 3676<br>Nerve Growth Factor May Mediate Posttranslational Pronociceptive Functions......Page 3677<br>Sodium Channels and Enhanced Peripheral Nerve Activity......Page 3678<br>Role of Calcium Channels......Page 3680<br>Enhanced Afferent Discharges Lead to Central Sensitization in the Spinal Cord......Page 3681<br>Excitatory Transmitters Promote Central Sensitization......Page 3682<br>Role of the Rostralventromedial Medulla in Descending Facilitation of Pain......Page 3683<br>The ON Cells of the Rostralventromedial Medulla Promote Pain Through Descending Facilitation......Page 3684<br>Second-Order Projection Neurons Expressing NK1 Receptors May Result in Activation of Descending Pain Facilitation......Page 3685<br>Descending Facilitation Maintains a Sensitized Spinal Cord: Upregulation of Spinal Dynorphin and Enhanced Release of Primary Afferent Transmitters......Page 3686<br>Descending Facilitation Maintains a Sensitized Spinal Cord: Serotonergic Contributions......Page 3687<br>Summary......Page 3688<br>References......Page 3689<br>Further Reading......Page 3695<br>Relevant Website......Page 3696<br>Animal Models of Neuropathic Pain......Page 3698<br>Models of Central Neuropathic Pain: Spinal Cord Injuries......Page 3699<br>Models of Peripheral Neuropathic Pain: Injury to Peripheral Nerves......Page 3700<br>Models of Peripheral Neuropathic Pain: Distal Nerve Branch Injuries......Page 3701<br>Behavioral Assessment of Neuropathic Pain in Animal Models: Spontaneous Pain, Stimulus-Evoked Pain, and Stimulus-Induced Pain......Page 3702<br>References......Page 3703<br>Neuropathic Pain: Clinical......Page 3706<br>Disease/Anatomy-Based Classification......Page 3707<br>Diabetic neuropathy......Page 3708<br>Fabry’s disease (angiokeratoma corporis diffusum)......Page 3710<br>Phantom limb pain......Page 3711<br>Central pain syndromes......Page 3712<br>Complex painful neuropathic disorders......Page 3713<br>Mechanism-Based Classification......Page 3714<br>Signs and Symptoms in Neuropathic Pain......Page 3715<br>Peripheral Sensitization of Primary Afferent Nociceptors......Page 3717<br>Central Sensitization......Page 3719<br>Central Disinhibition and Fascilitation......Page 3720<br>Peripheral Sensitization of Primary Afferent Neurons in Patients......Page 3721<br>Sensitization to Catecholamines in Patients......Page 3723<br>Central Sensitization in Patients......Page 3725<br>Deafferentation: Hyperactivity of Central Pain Transmission Neurons......Page 3726<br>Diagnostic Tools for Neuropathic Pain......Page 3727<br>Bedside Assessment of Neuropathic Pain......Page 3728<br>Skin Biopsies......Page 3730<br>Indirect Test of Afferent Unmyelinated Fiber Function......Page 3732<br>Do We Have Diagnostic Tool to Dissect Individual Mechanisms in Neuropathic Pain?......Page 3733<br>Therapy......Page 3734<br>Anticonvulsants (Ca Channel Modulators)......Page 3735<br>Cannabinoids......Page 3736<br>Treatment Guideline......Page 3737<br>References......Page 3738<br>Concept of Neurogenic Inflammation......Page 3742<br>Bone Fracture Model for Complex Regional Pain Syndrome I......Page 3743<br>Clinical Symptoms Suggesting Neurogenic Inflammation in Complex Regional Pain Syndrome......Page 3744<br>Hyperhidrosis......Page 3745<br>Experimental Studies......Page 3746<br>Treatment Studies......Page 3747<br>References......Page 3748<br>Complex Regional Pain Syndrome Type I (Reflex Sympathetic Dystrophy)......Page 3750<br>Inflammatory Processes......Page 3751<br>Autoimmune etiology......Page 3752<br>The Long Path Approaching the Central Nervous System......Page 3753<br>Validation of clinical diagnostic criteria......Page 3754<br>References......Page 3756<br>Characteristics of Central Pain After Stroke......Page 3760<br>Sensory Abnormalities......Page 3761<br>Epidemiology of Poststroke Pain......Page 3762<br>Mechanisms of Pain......Page 3763<br>Opioids......Page 3764<br>References......Page 3765<br>Further Reading......Page 3766<br>Measuring the Single Dimension of Pain in the Laboratory and in the Clinic......Page 3768<br>Measuring Pain in the Laboratory......Page 3769<br>Measuring Pain in the Clinic......Page 3772<br>Quantitative sensory testing methods......Page 3773<br>Burning mouth syndrome......Page 3774<br>Malignancy......Page 3775<br>Suprathreshold Pain Sensation......Page 3776<br>Advantages of multiple category items......Page 3778<br>Bounded continuous scales: the visual analog scale......Page 3779<br>Unbounded scales: ratio-scaling methods......Page 3780<br>Adapting psychophysical methods to pain assessment......Page 3781<br>Discrimination......Page 3782<br>Sensory decision theory applications to pain assessment......Page 3783<br>Utility of interactive adaptive methods......Page 3784<br>Stimulus integration: double-stimulus, single response methods......Page 3787<br>Psychophysical Studies of Feeling States: Hedonics......Page 3788<br>Validity of Scales of Pain Unpleasantness......Page 3789<br>The Concept of Affective Gain......Page 3790<br>The Need for Scaling Multiple Pain Dimensions......Page 3791<br>Issues Concerning Multidimensional Scaling......Page 3795<br>References......Page 3797<br>Further Reading......Page 3800<br>Introduction......Page 3802<br>Pain and the Neurobiology of Consciousness......Page 3803<br>Central Nervous System Activation......Page 3805<br>Central Nervous System Stimulation......Page 3806<br>Pain and Loss of Consciousness......Page 3807<br>References......Page 3808<br>The Biology of Pain......Page 3810<br>Animal Biology......Page 3811<br>The Psychology of Pain, the Psychology of Humans and the Psychology of Animals......Page 3812<br>Conclusion......Page 3813<br>References......Page 3814<br>Psychological Modulation of Pain......Page 3816<br>Factors contributing to pain unpleasantness......Page 3817<br>Ascending nervous system pathways for pain......Page 3819<br>The pivotal role of the anterior cingulate cortex (ACC) in pain affect......Page 3820<br>Psychophysical Studies of Effects of Attention and Distraction on Pain......Page 3821<br>Other accounts of pain modulation by attentional and cognitive processes......Page 3822<br>Separating the Influence of Attention and Emotions......Page 3823<br>Effect of attention and distraction on pain-evoked activity in the brain......Page 3824<br>Effects on Pain Intensity......Page 3825<br>The Influence of Expectancy on the Immediate Unpleasantness of Clinical Pain......Page 3826<br>Factors That Contribute to the Magnitude of Placebo Analgesia......Page 3827<br>Analyses of Factors That Contribute to the Magnitude of Placebo Analgesia......Page 3828<br>Suggestion......Page 3829<br>Desire for pain reduction......Page 3830<br>Placebo Analgesia As an Emotional Response......Page 3831<br>Do placebo effects result from changes in emotional states?......Page 3832<br>Is pain an emotion?......Page 3833<br>The experience of pain-related emotions......Page 3834<br>Pain anticipation and pain-related fear/anxiety......Page 3836<br>Emotions unrelated to pain......Page 3837<br>Effects of Emotions on Pain: Clinical Studies......Page 3838<br>References......Page 3839<br>Further Reading......Page 3843<br>Methodological Aspects......Page 3844<br>Psychological Explanations......Page 3845<br>Physiological Mechanisms......Page 3846<br>The Nocebo Effect......Page 3847<br>References......Page 3848<br>Glossary......Page 3850<br>Hypnosis Affects Consciousness-Related Brain Mechanisms......Page 3851<br>Hypnotic Analgesia in the Brain......Page 3852<br>Somatic Consequences of Hypnotic Analgesia......Page 3853<br>Clinical Applications of Hypnotic Analgesia......Page 3854<br>Conclusion......Page 3855<br>References......Page 3856<br>Volume 6 - Somatosensation ......Page 3858<br>Introduction to Volume 6......Page 3861<br>Dedication......Page 3863<br>Cutaneous Mechanisms of Tactile Perception: Morphological and Chemical Organization of the Innervation to the Skin......Page 3864<br>Glossary......Page 3865<br>Overview of Tactile Perception......Page 3866<br>Primary sensory neurons......Page 3867<br>Stimulus modality......Page 3868<br>Adequate or preferred stimulus......Page 3871<br>Organization of Innervation Among Structurally Complex Tactile Organs......Page 3872<br>Guard hair follicles......Page 3873<br>Glabrous fingertip skin......Page 3874<br>Merkel endings......Page 3877<br>Lanceolate endings and Meissner corpuscles......Page 3878<br>Lanceolate endings......Page 3879<br>Pacinian and Golgi-Mazzoni corpuscles......Page 3880<br>Free nerve endings......Page 3881<br>Raccoon glabrous fingertips......Page 3883<br>Degenerin/Epithelial Sodium Channel Superfamily......Page 3884<br>Other Molecules......Page 3885<br>Meissner corpuscle innervation......Page 3886<br>Sensory Transduction and Integration Among Epidermal Keratinocytes......Page 3887<br>Summary......Page 3889<br>References......Page 3890<br>Localization and Ultrastructure of Merkel Nerve Endings......Page 3896<br>Merkel Nerve Endings in Sinus Hairs of Mammals......Page 3897<br>Merkel Nerve Endings in the Mucosa of Mammals......Page 3898<br>Mechanoreceptor Function of Merkel Cells......Page 3899<br>References......Page 3900<br>Further Reading......Page 3901<br>Introduction......Page 3902<br>Classification of Innervating Fibers......Page 3903<br>Afferent Responses to Ramps and Vibration......Page 3904<br>Spatial Resolution of Single Afferents......Page 3905<br>Interpreting Resolution of Single Afferents......Page 3906<br>Responses to Contact Force......Page 3907<br>Signaling Must Be Viewed in Terms of Population Responses......Page 3908<br>More Realistic Population Responses......Page 3911<br>Measures of Stimulus Parameters......Page 3912<br>Hairy Skin......Page 3913<br>Responses to Stroking......Page 3914<br>References......Page 3915<br>Introduction......Page 3918<br>Coding of 2D Shape......Page 3919<br>Roughness/smoothness......Page 3920<br>Psychophysical Studies of 3D Size and Shape......Page 3922<br>Ascending pathways......Page 3923<br>Primary somatosensory cortex......Page 3924<br>Second somatosensory cortex (tactile ventral pathway)......Page 3925<br>Conclusion......Page 3926<br>References......Page 3927<br>Glossary......Page 3930<br>Sensory Systems Supporting Object Manipulation......Page 3931<br>Tactile Sensory Innervation of the Human Hand......Page 3933<br>Deformational Properties of the Fingertips and Coding of Tactile Information in Ensembles of Afferents......Page 3934<br>Relative Spike Timing Provides Fast Information about Mechanical Fingertip Events......Page 3939<br>Control of Grasp Stability......Page 3940<br>Control of Motion of Objects in Hand......Page 3944<br>Predictions and Control Points in Other Modalities......Page 3945<br>Conclusions......Page 3947<br>References......Page 3948<br>Introduction......Page 3950<br>Touch-pressure......Page 3951<br>Flutter-vibration......Page 3953<br>Proprioception......Page 3954<br>Visceral sensation......Page 3955<br>Thermoreceptive Circuits......Page 3957<br>Nociceptive Circuits......Page 3958<br>Spinothalamic tract neurons......Page 3959<br>Postsynaptic dorsal column neurons......Page 3961<br>Spinoreticular neurons......Page 3963<br>Spinohypothalamic and other spinolimbic neurons......Page 3964<br>Cranial Nerve Somatosensory Afferents......Page 3965<br>Thermoreceptive Circuits......Page 3969<br>Joint pain......Page 3970<br>Trigeminothalamic neurons......Page 3971<br>Descending Control Systems......Page 3972<br>References......Page 3973<br>Further Reading......Page 3979<br>Glossary......Page 3980<br>Introduction......Page 3981<br>Somatosensory Afferents and Afferent Pathways......Page 3982<br>Somatosensory Relay Nuclei of the Medulla and Upper Spinal Cord......Page 3983<br>The Dorsal Column-Trigeminal Complex......Page 3985<br>The Nuclei of the Somatosensory Thalamus, Their Spinal Cord and Brainstem Somatosensory Inputs, and Their Cortical Projections......Page 3988<br>The Ventroposterior Nucleus......Page 3989<br>The Ventroposterior Superior Nucleus......Page 3994<br>The Ventroposterior Inferior Nucleus......Page 3996<br>Other Nuclei: The Anterior Pulvinar, the Lateral Posterior Nucleus, the Posterior Group, the Ventroposterior Parvocellular Nucleus, and the Ventromedial Posterior Nucleus......Page 3998<br>References......Page 3999<br>Glossary......Page 4006<br>Introduction......Page 4007<br>The Somatosensory Cortex of Nonprimate Mammals......Page 4008<br>The Somatosensory Cortex of Prosimian Primates......Page 4012<br>The Anterior Parietal Cortex of New World Monkeys......Page 4014<br>Other Somatosensory Areas of New World Monkeys......Page 4016<br>Modules in Area 3b of Old World and New World Monkeys......Page 4017<br>The Anterior Parietal Cortex of Old World Monkeys, Apes, and Humans......Page 4020<br>Architectonic Areas of Lateral and Posterior Parietal Cortex......Page 4026<br>Conclusions......Page 4027<br>References......Page 4028<br>Further Reading......Page 4032<br>Glossary......Page 4034<br>Areal Specification......Page 4035<br>Thalamocortical Axon Guidance......Page 4037<br>Positional cues underlying topography......Page 4039<br>Role of neuronal activity in patterning of the somatosensory cortex......Page 4040<br>References......Page 4042<br>The Evolution of Parietal Areas Involved in Hand Use in Primates......Page 4046<br>Sensory Versus Association Cortex......Page 4047<br>Organization of Anterior Parietal Cortex in Primates (Areas 3b, 3a, 1, and 2)......Page 4049<br>Functional Organization......Page 4050<br>Connections......Page 4054<br>Functional Organization......Page 4058<br>Functional Organization......Page 4061<br>Functional Organization......Page 4063<br>Functional Organization......Page 4066<br>Connections......Page 4067<br>The Evolution of Anterior and Posterior Parietal Cortex......Page 4069<br>References......Page 4071<br>Further Reading......Page 4077<br>Glossary......Page 4078<br>Introduction......Page 4079<br>S1 Responses during Vibrotactile Detection......Page 4080<br>Further Comments on the Functional Role of S1 in Sensory Detection......Page 4081<br>Sensory Discrimination......Page 4083<br>Neuronal Correlates of Flutter Discrimination in S1......Page 4085<br>Artificial Induction of Activity in S1 Underlying Flutter Discrimination......Page 4089<br>Further Comments on the Functional Role of S1 to Flutter Discrimination......Page 4091<br>Conclusion......Page 4093<br>References......Page 4094<br>Further Reading......Page 4095<br>Introduction......Page 4096<br>Anatomical Localization of the Posterior Parietal Cortex......Page 4097<br>Physiological Studies of Posterior Parietal Cortex......Page 4100<br>Reaching as a Model System for Analyzing Sensorimotor Integration......Page 4101<br>Role of Posterior Parietal Cortex in Motor Planning and the Neural Representation of Space......Page 4102<br>Grasping and Hand Manipulation Neurons in Posterior Parietal Cortex......Page 4105<br>Bilateral Coordination of the Hands......Page 4112<br>Posterior Parietal Cortex and Active Touch......Page 4114<br>Acknowledgments......Page 4115<br>References......Page 4116<br>Further Reading......Page 4121<br>Glossary......Page 4122<br>Introduction......Page 4123<br>The Functional Anatomy of the Somatosensory System......Page 4124<br>Functional Circuitry of the Spinal Cord - Comparing Primates and Rodents......Page 4126<br>Representational Maps......Page 4129<br>Peripheral nerve injuries and amputation......Page 4130<br>Dorsal rhizotomy - root cut......Page 4131<br>Deafferentation of the dorsal column nuclei......Page 4132<br>Nonhuman primate studies......Page 4136<br>Behavioral studies in the rodent......Page 4138<br>Activity-dependent changes in synaptic transmission - hebbian learning and long-term potentiation......Page 4139<br>Cortical Plasticity in Braille Readers......Page 4140<br>Musicians: Training, Focal Hand Dystonia, and Rehabilitative Training......Page 4141<br>The Dynamics of the Somatosensory Cortex during Learned Sensorimotor Tasks......Page 4142<br>Changes in Response to Somatosensory Cortical Ablation, Ischemia, or Stroke......Page 4143<br>Cortical Plasticity in Multiple Sclerosis......Page 4146<br>Cortical Plasticity in Response to Other Diseases......Page 4148<br>Cortical Reorganization and Chronic Pain......Page 4149<br>Pathway Divergence and Disinhibition......Page 4151<br>Injury-induced structural changes: axonal sprouting......Page 4152<br>Injury- and experience-induced structural changes in dendrites......Page 4153<br>Atrophy, transneuronal atrophy, and degeneration......Page 4154<br>References......Page 4155<br>Further Reading......Page 4160<br>Intrinsic Signal Imaging of Somatosensory Cortex Organization......Page 4162<br>Optical Imaging of Cortical Topography in Alert Monkeys......Page 4164<br>The Funneling Illusion......Page 4166<br>Intensity of Funneling Percept......Page 4167<br>Presence of Interdigitated Multiple Maps......Page 4169<br>A New Model of Somatosensory Cortex Organization......Page 4172<br>References......Page 4173<br>Further Reading......Page 4176<br>Twenty-Five Years of Multielectrode Recordings in the Somatosensory System: It is All about Dynamics......Page 4178<br>Introduction......Page 4179<br>Location Coding......Page 4180<br>Spatiotemporal Receptive Fields Point to Multiwhisker Integration over Time......Page 4181<br>Multiwhisker Stimulation......Page 4183<br>Bilateral Interactions......Page 4184<br>Coordinated Firing of Simultaneously Recorded Neurons......Page 4186<br>Modified Inputs......Page 4187<br>Behavioral Modulation of Tactile Responses......Page 4188<br>Conclusion and Outlook......Page 4190<br>References......Page 4191<br>Glossary......Page 4194<br>Receptor Structure and Function......Page 4195<br>Location......Page 4196<br>Heat-Sensory Pit Organs of Snakes......Page 4197<br>Receptor Structure and Function......Page 4198<br>Pathways to and through the Central Nervous System......Page 4199<br>Vibrissae in mammals......Page 4200<br>Nonmystacial vibrissae in terrestrial mammals......Page 4202<br>Functions of vibrissae in aquatic mammals......Page 4203<br>Innervation density......Page 4204<br>Evolution and vibrissae......Page 4205<br>Specialized relatively hairless regions of skin in mammals......Page 4206<br>Stars of star-nosed moles......Page 4208<br>Overview......Page 4209<br>References......Page 4213<br>Further Reading......Page 4216<br>Introduction......Page 4218<br>Trichoid Sensillae......Page 4219<br>The Insect Cercal System......Page 4220<br>Central processing of cercal afferent information......Page 4222<br>Mapping of the surface of the insect leg by mechanosensory signals in the locust nervous system......Page 4223<br>References......Page 4224<br>Further Reading......Page 4225<br>Glossary......Page 4226<br>Somatosensory Aspects of Braille Reading......Page 4228<br>One- or Two-Handed Braille Reading......Page 4229<br>Heightened Tactile Acuity......Page 4230<br>The Effects of Practice and Enhanced Attentive Skills......Page 4231<br>The Blind Artist......Page 4232<br>Spatial Cognition and Blindness......Page 4234<br>Evidence for Reorganized Somatosensory Cortex......Page 4235<br>Does Reorganization Follow a Hebbian Model?......Page 4236<br>Response Dynamics in S1 and S2......Page 4237<br>Metabolic Changes......Page 4238<br>Studies in Animals......Page 4239<br>Disrupted tactile processing: effects of repetitive transcranial magnetic stimulation and stroke......Page 4240<br>Regional distribution of visual cortex activity - perceptual processing......Page 4241<br>Regional distribution of visual cortex activity - cognitive processing......Page 4244<br>Connections with Multisensory Areas......Page 4246<br>Altered Physiology......Page 4247<br>Conclusions......Page 4248<br>References......Page 4249<br>Macrospatial versus Microspatial Tasks......Page 4256<br>Motion, Texture, and Form......Page 4258<br>Visual Imagery and Multisensory Representations......Page 4259<br>Cross-Modal Conflict, Enhancement, and Perceptual Illusions......Page 4262<br>Acknowledgments......Page 4264<br>References......Page 4265<br>Further Reading......Page 4267<br>A......Page 4268<br>B......Page 4285<br>C......Page 4293<br>D......Page 4314<br>E......Page 4323<br>F......Page 4329<br>G......Page 4336<br>H......Page 4343<br>I......Page 4352<br>K......Page 4363<br>L......Page 4365<br>M......Page 4371<br>N......Page 4387<br>O......Page 4401<br>P......Page 4414<br>R......Page 4438<br>S......Page 4449<br>T......Page 4473<br>U......Page 4489<br>V......Page 4490<br>W......Page 4502<br>Y......Page 4503<br>Z......Page 4504<br>