دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: شیمیایی ویرایش: 4th نویسندگان: James E. Mark, Burak Erman, Mike Roland سری: ISBN (شابک) : 0123945844, 9780123945846 ناشر: Academic Press سال نشر: 2013 تعداد صفحات: 801 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 28 مگابایت
کلمات کلیدی مربوط به کتاب علم و تکنولوژی لاستیک: شیمی و صنایع شیمیایی، فناوری شیمیایی، فناوری الاستومرها و محصولات حاصل از آنها
در صورت تبدیل فایل کتاب The Science and Technology of Rubber به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب علم و تکنولوژی لاستیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover ......Page 1
Half Title......Page 2
Title Page......Page 4
Copyright......Page 5
Contents......Page 6
1.2 Elasticity of a Single Molecule......Page 16
1.3 Elasticity of a Three-Dimensional Network of Polymer Molecules......Page 20
1.4 Comparison with Experiment......Page 24
1.5 Continuum Theory of Rubber Elasticity......Page 26
1.5.1 Stress-Strain Relations......Page 27
(i) Strain-Hardening at Large Strains......Page 28
(ii) Inflation of a Thin-Walled Tube......Page 29
(iii) Inflation of a Thin-Walled Spherical Balloon......Page 30
(iv) Inflation of a Thick-Walled Spherical Shell......Page 31
(v) Surface Instability of Compressed or Bent Blocks......Page 32
(vii) Torsional Instability of Stretched Rubber Rods (Gent and Hua 2004)......Page 33
1.6 Second-Order Stresses......Page 34
1.7 Elastic Behavior Under Small Deformations......Page 36
1.8 Some Unsolved Problems in Rubber Elasticity......Page 39
Further Reading......Page 40
2.1 Introduction......Page 42
2.2 Classification of Polymerization Reactions and Kinetic Considerations......Page 43
2.2.1 Polyaddition/Polycondensation......Page 44
2.2.2 Chain Polymerization......Page 46
2.3 Polyaddition/Polycondensation......Page 47
2.4.1 General Kinetics......Page 49
2.4.2 Molecular Weight Distribution......Page 53
2.4.3 Special Case of Diene Polymerization......Page 54
2.4.4 Controlled Radical Polymerization......Page 55
2.5.1 Mechanism and Kinetics......Page 58
(i) Kinetics and Molecular Weights......Page 62
(i) Kinetics......Page 66
(ii) Chain Structure......Page 68
2.6.1 Kinetics......Page 69
(i) Styrene-Butadiene (SBR)......Page 72
(iii) Chloroprene......Page 74
2.7.1 Mechanism and Kinetics......Page 75
2.7.2 Butyl Rubber......Page 79
2.7.3 Living Cationic Polymerizations......Page 80
2.7.4 Other Cationic Polymerizations: Heterocyclic Monomers......Page 81
2.8.1 Mechanism and Kinetics......Page 83
2.8.2 Chain Microstructure of Polydienes......Page 90
2.8.3 Copolymers of Butadiene......Page 92
2.8.4 Terminally Functional Polydienes......Page 93
2.9.1 Mechanism and Kinetics......Page 94
2.9.2 Ethylene-Propylene Rubbers......Page 98
2.9.3 Polydienes......Page 100
2.9.4 Polyalkenamers......Page 101
2.10.1 Graft Copolymerization by Conventional Free Radical Reactions......Page 104
(i) Chemical Initiation......Page 105
2.10.2 Block Copolymers by Controlled Radical Mechanisms......Page 107
2.10.3 Block Copolymers by Anionic Mechanism......Page 108
2.10.4 Block Copolymers by Cationic Mechanism......Page 112
2.10.5 Block Copolymers by Ziegler-Natta (Insertion) Mechanism......Page 113
References......Page 115
3.1 Introduction......Page 130
3.2 Chemical Composition......Page 131
3.3 Sequence Distribution of Repeat Units......Page 134
3.4.1 Molecular Weight and Its Distribution......Page 137
3.4.2 Branching......Page 150
3.4.3 Gel......Page 153
3.5 Glass Transition and Secondary Relaxation Processes......Page 155
3.6.1 Orientation......Page 160
3.6.2 Blends......Page 163
3.6.3 Crystallinity......Page 169
3.6.4 Defects......Page 172
References......Page 174
4.1 Introduction......Page 182
4.2 Structure of a Typical Network......Page 183
4.3 Elementary Molecular Theories......Page 184
4.3.1 Elasticity of the Single Chain......Page 185
4.3.2 The Elastic Free Energy of the Network......Page 188
4.3.3 The Reduced Stress and the Elastic Modulus......Page 189
4.4.1 The Constrained Junction Model......Page 192
4.4.2 Entanglement Models......Page 194
4.4.3 Contribution of Trapped Entanglements to the Modulus......Page 196
4.5 Phenomenological Theories and Molecular Structure......Page 197
4.6 Swelling of Networks and Responsive Gels......Page 198
4.7 Enthalpic and Entropic Contributions to Rubber Elasticity: The Force-Temperature Relations......Page 200
4.8 Direct Determination of Molecular Dimensions......Page 202
4.9.1 Gaussian Versus Non-Gaussian Effects......Page 203
References......Page 205
5.1 Introduction......Page 208
5.2.1 Creep and Recovery......Page 213
5.2.3 Dynamic Mechanical Measurements......Page 214
(i) Tensile and Bulk Moduli: Tensile and Bulk Compliance......Page 216
5.3 The Glass Temperature......Page 217
5.4.1 Isothermal Measurements of Time or Frequency Dependence......Page 218
5.4.2 Temperature Dependence......Page 219
5.5.1 Fluorinated Hydrocarbon Elastomers (``Viton'')......Page 222
(ii) Temperature Dependence of the Shift Factors......Page 223
(iii) Retardation Spectra......Page 224
(iv) Derived Dynamic Mechanical Properties......Page 225
5.5.2 Urethane-Crosslinked Polybutadiene Elastomers (Plazek et al., 1988)......Page 228
5.5.3 Comparisons Between Different Elastomers......Page 230
5.5.4 Other Viscoelastic Measurements......Page 231
5.6.1 Breakdown of Thermorheological Simplicity of Low Molecular Weight Polymer......Page 232
(i) The Coupling Model......Page 234
(ii) Explanation of Thermorheological Complexity......Page 236
5.6.2 Thermorheological Simplicity of Elastomers......Page 239
(i) Experimental Data......Page 240
(ii) Coupling Model Explanation (Roland and Ngai 1991; Ngai et al. 1993a)......Page 241
(iii) Similarity of Flory's Constrained Junction Model for Elasticity to the Coupling Model for Junction Dynamics......Page 242
5.7.1 Intermolecularly Coupled Segmental Relaxation and Interchain Coupled Chain Dynamics in Highly Asymmetric Polymer Blends......Page 244
(i) Segmental and Global Chain Dynamics of PEO in Blends with PMMA......Page 248
5.7.3 Explanation of Properties (i)–(ix)......Page 275
(i) Explanation of Property (i)......Page 276
(ii) Explanation of Property (ii)......Page 282
(iv) Explanation of Property (iv)......Page 285
(v) Explanation of Property (v)......Page 287
(vi) Explanation of Property (vi)......Page 289
(vii) Explanation of Property (vii)......Page 291
(viii) Explanation of Properties (viii) and (viii')......Page 292
(ix) Explanation of Property (ix)......Page 293
References......Page 294
6.1.1 Introduction......Page 300
6.1.2 Basic Concepts......Page 301
6.2.1 Material Constants......Page 304
6.2.2 Boltzmann Superposition Principle......Page 309
(i) Superposition Principle......Page 312
(ii) Density Scaling......Page 316
6.2.4 Molecular Weight Dependences......Page 318
6.2.5 Stress Birefringence......Page 322
6.3.1 Shear Thinning Flow......Page 325
6.3.2 Particulate Fillers......Page 326
(i) Payne Effect......Page 327
(ii) Mullins Effect......Page 328
(iii) Nanofillers......Page 330
6.3.3 Blends......Page 332
6.4.1 Dimensionless Quantities......Page 334
(iv) Capillary Number......Page 335
(viii) Elasticity Number......Page 336
(ii) Laun Relations (Laun, 1986)......Page 337
(iii) Gleissle Equations (Gleissle, 1980)......Page 338
(v) Boyer-Spencer (Boyer and Spencer, 1944) and Simha-Boyer (Simha and Boyer, 1962) Rules......Page 339
6.5.1 Mixing......Page 340
6.5.2 Die Swell......Page 342
6.5.3 Tack......Page 344
References......Page 345
7.1 Introduction......Page 352
7.2 Definition of Vulcanization......Page 353
7.3 Effects of Vulcanization on Vulcanizate Properties......Page 354
7.4 Characterization of the Vulcanization Process......Page 355
7.5 Vulcanization by Sulfur without Accelerator......Page 358
7.6 Accelerated-Sulfur Vulcanization......Page 360
7.6.1 The Chemistry of Accelerated-Sulfur Vulcanization......Page 366
7.6.2 Delayed-Action Accelerated Vulcanization......Page 368
7.6.3 The Role of Zinc in Benzothiazole-Accelerated Vulcanization......Page 370
7.6.4 Achieving Specified Vulcanization Characteristics......Page 371
7.6.5 Effects on Adhesion to Brass-Plated Steel......Page 372
7.6.6 The Effect on Vulcanizate Properties......Page 373
7.6.7 Accelerated-Sulfur Vulcanization of Various Unsaturated Rubbers......Page 378
7.7 Vulcanization by Phenolic Curatives, Benzoquinone Derivatives, or Bismaleimides......Page 379
7.8 Vulcanization by the Action of Metal Oxides......Page 383
7.9 Vulcanization by the Action of Organic Peroxides......Page 385
7.9.1 Peroxide Vulcanization of Unsaturated Hydrocarbon Elastomers......Page 386
7.9.2 Peroxide Vulcanization of Saturated Hydrocarbon Elastomers......Page 388
7.9.3 Peroxide Vulcanization of Silicone Rubbers......Page 389
7.9.4 Peroxide Vulcanization of Urethane Elastomers......Page 390
7.10 Dynamic Vulcanization......Page 391
7.10.2 NBR-Nylon Compositions......Page 392
7.10.4 Technological Applications......Page 393
References......Page 394
8.1 Introduction......Page 398
(i) Carbon Black......Page 399
(ii) Silicas......Page 400
(i) Filler Morphology......Page 401
(ii) Surface Area......Page 403
(iii) Structure......Page 404
(iv) Aggregate Size Distribution......Page 406
(ii) Laser Granulometry......Page 407
(i) Surface Energy......Page 408
(ii) Surface Chemistry......Page 409
(i) Dispersion......Page 412
(ii) Object Sizes in the Mix......Page 413
(iii) Distances......Page 414
(i) Carbon Black......Page 415
(ii) Silica......Page 416
8.5.1 Mechanical Properties in Green State......Page 417
(iii) Shear Dependence of Viscosity, Non-Newtonian Behavior......Page 418
(i) Small-Strain Properties, Dynamic Viscoelastic Measurements......Page 419
8.5.3 Applications......Page 426
References......Page 428
9.1 Introduction......Page 432
9.2.1 Natural Rubber......Page 433
9.2.2 Synthetic Elastomers......Page 435
9.3.1 Carbon Black Properties......Page 446
9.3.2 Silica and Silicates......Page 453
9.3.3 Chemistry of Silane Coupling Agents......Page 455
9.3.4 Other Filler Systems......Page 458
9.4.1 Degradation of Rubber......Page 459
9.4.2 Antidegradant Use......Page 461
9.4.3 Antidegradant Types......Page 462
9.5 Vulcanization System......Page 464
9.5.1 Activators......Page 465
9.5.3 Accelerators......Page 469
9.5.4 Retarders and Antireversion Agents......Page 470
9.6.1 Processing Oils......Page 472
9.6.2 Plasticizers......Page 474
9.6.3 Chemical Peptizers......Page 475
9.6.5 Short Fibers......Page 476
9.7 Compound Development......Page 477
9.8 Compound Preparation......Page 478
9.9 Environmental Requirements in Compounding......Page 480
9.10 Summary......Page 484
References......Page 485
10.1 Introduction......Page 488
10.2.1 Flaws and Stress Raisers......Page 489
10.2.2 Stress and Energy Criteria for Rupture......Page 491
10.2.3 Tensile Test Piece......Page 493
10.2.4 Tear Test Piece......Page 495
10.3 Threshold Strengths and Extensibilities......Page 496
10.4.2 Viscoelastic Elastomers......Page 500
10.4.3 Strain-Crystallizing Elastomers......Page 503
10.4.4 Reinforcement with Fillers......Page 504
10.4.5 Repeated Stressing: Dynamic Crack Propagation......Page 506
10.5.1 Effects of Rate and Temperature......Page 509
10.5.2 The Failure Envelope......Page 511
10.5.3 Effect of Degree of Crosslinking......Page 512
10.5.4 Strain-Crystallizing Elastomers......Page 514
10.5.5 Energy Dissipation and Strength......Page 515
10.6 Repeated Stressing: Mechanical Fatigue......Page 516
10.7.1 Critical Plane Hypothesis......Page 519
10.7.2 Energy Density Available for Driving Growth of Crack Precursors......Page 520
10.7.4 Equibiaxial Tension......Page 521
10.7.5 Triaxial Tension......Page 522
10.8 surface Cracking by Ozone......Page 523
10.9.1 Mechanics of Wear......Page 524
10.10 Computational Approaches to Failure Modeling......Page 527
References......Page 528
11.1 Introduction......Page 532
11.2 Chemical Modification of Polymers Within Backbone and Chain Ends......Page 533
11.3 Esterification, Etherification, and Hydrolysis of Polymers......Page 535
11.4 The Hydrogenation of Polymers......Page 538
11.5.1 Dehydrochlorination of Poly(vinyl chloride)......Page 539
11.5.2 Thermal Elimination......Page 540
11.5.3 Halogenation of Polymers......Page 541
11.5.4 Cyclization of Polymers......Page 542
11.6.1 Ethylene Derivatives......Page 543
11.7 Oxidation Reactions of Polymers......Page 545
11.9 Miscellaneous Chemical Reactions of Polymers......Page 546
11.10.1 Effects on Structure and Properties of Polymers......Page 547
11.10.3 Examples......Page 549
11.10.4 Other Methods of Effecting Mechanicochemical Reactions......Page 550
(i) Three-Stage Process with Monofunctional Initiators......Page 551
11.10.6 Graft Copolymer Synthesis......Page 552
(ii) Copolymerization via Unsaturated Groups......Page 553
(iii) Redox Polymerization......Page 554
(iv) High-Energy Radiation Techniques......Page 556
(v) Photochemical Synthesis......Page 557
(vi) Metallation Using Activated Organolithium with Chelating Diamines......Page 558
11.10.7 Base Polymer Properties......Page 559
References......Page 560
12.1 Introduction......Page 562
12.2 Thermodynamics and Solubility Parameters......Page 567
12.2.1 Flory-Huggins Model......Page 568
12.2.2 Solubility and Interaction Parameters......Page 569
12.2.3 Other Models......Page 571
12.3 Preparation......Page 573
(i) Glass Transition......Page 574
(iii) Crystallinity......Page 575
(iv) Interdiffusion......Page 576
12.4.3 Compositional Gradient Copolymers......Page 577
(i) IR–BR Blends......Page 580
12.4.5 Reactive Elastomers......Page 581
(i) Microscopy......Page 582
(iii) Magnetic Resonance Imaging......Page 584
(iv) Light, X-ray, and Neutron Scattering......Page 585
(i) Curative and Plasticizer Migration in Elastomer Blends......Page 586
(ii) Cure Compatibility......Page 587
(iii) Interphase Filler Transfer......Page 589
(vi) Mechanical Damping......Page 591
12.5.6 Compatibilization......Page 592
(i) Processing......Page 594
(iv) Hysteresis......Page 595
(v) Failure......Page 596
(ii) Saturated and Unsaturated Elastomer Blends......Page 597
12.6 Conclusion......Page 598
Appendix 1: Acronyms for Common Elastomers......Page 599
References......Page 600
13.1 Introduction......Page 606
13.2.1 Step-Growth Polymerization: Polyurethanes, Polyether-esters, Polyamides......Page 612
13.2.2 Anionic Polymerization: Styrene-Diene Copolymers......Page 614
13.2.4 Free Radical Polymerization......Page 615
13.2.5 Molecular Weight and Chain Structure......Page 616
13.3.1 General Characteristics......Page 619
(i) Transmission Electron Microscopy (TEM)......Page 622
(ii) Infrared and Raman Spectroscopy......Page 623
(iii) Wide Angle X-ray Scattering (WAXS)......Page 627
(iv) Small-Angle X-ray Scattering (SAXS)......Page 629
(v) Small-Angle Neutron Scattering (SANS)......Page 632
(vi) Nuclear Magnetic Resonance (NMR)......Page 634
13.4.1 General Characteristics......Page 635
13.4.2 Mechanical Properties......Page 638
13.4.3 Thermal and Chemical Properties......Page 642
13.5 Thermodynamics of Phase Separation......Page 643
13.6.1 General Characteristics......Page 648
(i) Scanning Electron Microscopy (SEM)......Page 650
(ii) Attenuated Total Internal Reflection Infrared Spectroscopy (ATR)......Page 651
(iii) X-Ray Photoelectron Spectroscopy (XPS)......Page 652
(iv) Secondary Ion Mass Spectroscopy (SIMS)......Page 653
(v) Atomic Force Microscopy......Page 654
13.7 Rheology and Processing......Page 656
13.8 Applications......Page 659
References......Page 662
14.2 Tire Types and Performance......Page 668
14.3.2 Tire Components......Page 671
14.4.1 Tire Nomenclature and Dimensions......Page 673
14.4.2 Tire Mold Design......Page 676
14.4.3 Cord Tension......Page 681
14.4.4 Tread Design Patterns......Page 682
14.5.1 Tire Reinforcement......Page 686
14.5.2 Steel Cord......Page 687
14.5.3 Mechanism of Rubber: Brass Wire Adhesion......Page 689
14.5.5 Nylon......Page 692
14.5.6 Polyester......Page 693
14.5.8 Aramid......Page 694
14.5.9 Tire Cord Construction......Page 695
14.5.10 Fabric Processing......Page 696
14.5.11 Function of Adhesive......Page 698
14.5.12 Rubber Compounding......Page 699
14.6.1 Laboratory Testing......Page 700
14.7 Tire manufacturing......Page 703
14.7.1 Compound Processing......Page 704
14.7.3 Extrusion......Page 706
14.7.4 Tire Building......Page 707
14.7.5 Final Tire Inspection......Page 708
References......Page 709
15.1 Introduction......Page 712
15.3.1 Reclaiming Technology......Page 715
15.3.2 Surface Treatment......Page 718
15.3.3 Grinding and Pulverization Technology......Page 719
(i) Microwave Method......Page 723
(ii) Ultrasonic Method......Page 724
15.4.1 General Remarks......Page 737
15.4.3 Rubber-Recycled Rubber Blends......Page 738
15.4.4 Thermoplastic-Recycled Rubber Blend......Page 745
15.4.5 Concrete Modified by Recycled Rubber......Page 757
15.4.6 Asphalt Modified by Recycled Rubber......Page 760
15.4.7 Use of Crumb Rubber in Soil......Page 765
(ii) Absorbents......Page 766
15.5.1 Recovery of Hydrocarbon Liquid and Carbon Black......Page 768
15.6 Concluding Remarks......Page 770
References......Page 771
B......Page 780
C......Page 781
E......Page 784
F......Page 786
G......Page 787
I......Page 788
M......Page 789
N......Page 790
P......Page 791
R......Page 792
S......Page 795
T......Page 797
V......Page 799
Z......Page 801