دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: James G. Speight
سری:
ISBN (شابک) : 012816994X, 9780128169940
ناشر: Gulf Professional Publishing
سال نشر: 2020
تعداد صفحات: 647
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 مگابایت
در صورت تبدیل فایل کتاب The Refinery of the Future به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پالایشگاه آینده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
پالایشگاه آینده، ویرایش دوم، دانش مفیدی را ارائه می دهد که به مهندس کمک می کند تا فرآیندهای درگیر، مواد اولیه، ترکیب و فناوری های آینده را درک کند. این مرجع با پوشش شیمی پایه، فرآیندهای تجاری در حال استفاده و نوآوری های آینده، ابزارهای مورد نیاز برای درک محصولات پالایشی، مواد اولیه و فرآیندهای حیاتی برای تبدیل مواد اولیه به نتایج مطلوب را در اختیار مهندسان و مدیران قرار می دهد. اطلاعات جدید در مورد سازندهای شیل تنگ و گزینه های فرآیند نفت سنگین برای عملیات امروز گنجانده شده است. این کتاب با تکمیل کاربردهای آینده در شیل، مایعات زیستی و پیکربندی پالایشگاه، به مهندسان و مدیران پالایشگاه این دانش را میدهد تا داراییهای پالایشگاه خود را بهروزرسانی و ارتقا دهند.
The Refinery of the Future, Second Edition, delivers useful knowledge that will help the engineer understand the processes involved, feedstocks, composition and future technologies. Covering the basic chemistry, commercial processes already in use and future innovation, this reference gives engineers and managers the tools needed to understand refining products, feedstocks, and the processes critical to convert feedstocks to desired outcomes. New information concerning tight shale formations and heavy oil process options is included for today’s operations. Rounding out with future uses in shale, bioliquids and refinery configurations, this book gives engineers and refinery managers the knowledge to update and upgrade their refinery assets.
Cover The Refinery of the Future Copyright Contents Preface 1 Feedstock types and properties 1.1 Introduction 1.2 Terminology 1.2.1 Conventional crude oil 1.2.2 High-acid crudes 1.2.2.1 Properties and character of naphthenic acids 1.2.2.2 Naphthenic acid chemistry 1.2.2.3 Total acid number and laboratory testing 1.2.3 Opportunity crudes 1.2.4 Foamy oil 1.2.5 Tight oil 1.2.6 Heavy crude oil 1.2.7 Extra heavy oil 1.2.8 Tar sand bitumen 1.3 Occurrence and reserves 1.3.1 Conventional crude oil 1.3.2 Heavy crude oil 1.3.3 Extra heavy oil 1.3.3.1 Tar sand bitumen 1.4 Ultimate (elemental) composition 1.5 Chemical composition 1.5.1 Crude oil 1.6 Fractional composition 1.6.1 Distillation 1.6.1.1 Gases and naphtha 1.6.1.2 Middle distillates 1.6.1.3 Vacuum residua 1.6.2 Solvent methods 1.6.2.1 Asphaltene separation 1.6.2.2 Fractionation 1.6.3 Adsorption methods 1.6.3.1 General methods 1.6.3.2 US Bureau of Mines-American Petroleum Institute and Saturates, Aromatic Derivatives, Resins, and Asphaltenes methods 1.6.3.3 ASTM methods 1.7 Crude oil products 1.8 Petrochemicals References 2 Introduction to refining processes 2.1 Introduction 2.2 Refinery configurations 2.3 Refinery processes 2.3.1 Dewatering and desalting 2.3.2 Distillation 2.3.2.1 Atmospheric distillation 2.3.2.2 Vacuum distillation 2.3.2.3 Azeotropic distillation and extractive distillation 2.3.3 Thermal (noncatalytic) processes 2.3.3.1 Thermal cracking 2.3.3.2 Visbreaking 2.3.3.3 Coking 2.3.3.3.1 Delayed coking 2.3.3.3.2 Fluid Coking 2.3.4 Catalytic cracking processes 2.3.4.1 Fluid-bed catalytic cracking 2.3.4.2 Moving-bed catalytic cracking 2.3.4.3 Fixed-bed catalytic cracking 2.3.4.4 Catalysts 2.3.5 Hydroprocesses 2.3.5.1 Hydrotreating 2.3.5.2 Hydrocracking 2.3.6 Reforming 2.3.6.1 Thermal reforming 2.3.6.2 Catalytic reforming 2.3.6.3 Catalysts 2.3.7 Isomerization 2.3.7.1 Processes 2.3.7.2 Catalysts 2.3.8 Alkylation processes 2.3.8.1 Processes 2.3.8.2 Catalysts 2.3.9 Polymerization processes 2.3.9.1 Processes 2.3.9.2 Catalysts 2.3.9.3 Dewaxing 2.3.10 Gas cleaning 2.3.11 Ancillary operations 2.4 The future References 3 Refining chemistry 3.1 Introduction 3.2 Cracking 3.2.1 Thermal cracking 3.2.1.1 General chemistry 3.2.1.2 Asphaltene chemistry 3.2.1.3 Process chemistry 3.2.2 Catalytic cracking 3.2.2.1 General chemistry 3.2.2.2 Coke formation 3.3 Hydroprocesses 3.3.1 Hydrocracking 3.3.1.1 General chemistry 3.3.1.2 Asphaltene chemistry 3.3.1.3 Catalysts 3.3.2 Hydrotreating 3.3.2.1 General chemistry 3.3.2.2 Asphaltene chemistry 3.3.2.3 Catalysts 3.4 Other reactions 3.4.1 Dehydrogenation 3.4.2 Dehydrocyclization 3.4.3 Isomerization 3.4.4 Alkylation 3.4.5 Polymerization 3.5 Instability and incompatibility 3.5.1 Definitions and terminology 3.5.2 General chemistry 3.5.3 Test methods 3.5.4 Determination of instability and incompatibility 3.5.4.1 Elemental analysis 3.5.4.2 Density/specific gravity 3.5.4.3 Volatility 3.5.4.4 Viscosity 3.5.4.5 Asphaltene content 3.5.4.6 Pour point 3.5.4.7 Acidity 3.5.4.8 Metal content 3.5.4.9 Water content, salt content, and bottom sediment and water 3.6 The future References 4 Distillation 4.1 Introduction 4.2 Current processes and equipment 4.2.1 Atmospheric distillation 4.2.2 Vacuum distillation 4.2.3 Columns 4.2.4 Tray columns 4.2.5 Packed columns 4.3 Other processes 4.3.1 Stripping 4.3.2 Rerunning 4.3.3 Stabilization and light end removal 4.3.4 Superfractionation 4.3.5 Azeotropic distillation 4.3.6 Extractive distillation 4.3.7 Process options for viscous feedstocks 4.4 The future 4.4.1 Distillation units 4.4.2 Combating corrosion 4.4.3 Refinery feedstocks References 5 Thermal cracking 5.1 Introduction 5.2 Early processes 5.3 Commercial processes 5.3.1 Visbreaking 5.3.2 Coking processes 5.3.2.1 Delayed coking 5.3.2.2 Fluid coking 5.3.2.3 Flexicoking 5.4 Process options for heavy feedstocks 5.4.1 Aquaconversion process 5.4.2 Asphalt coking technology process 5.4.3 Cherry-P (comprehensive heavy ends reforming refinery) process 5.4.4 Decarbonizing process 5.4.5 ET-II process 5.4.6 Eureka process 5.4.7 Fluid thermal cracking process 5.4.8 High conversion soaker cracking process 5.4.9 Mixed-phase cracking 5.4.10 Selective cracking 5.4.11 Shell thermal cracking 5.4.12 Tervahl-T process 5.5 The future References 6 Catalytic cracking 6.1 Introduction 6.2 Early processes 6.3 Commercial processes 6.3.1 Fixed-bed processes 6.3.2 Fluid-bed processes 6.3.2.1 Fluid-bed catalytic cracking 6.3.2.2 Model IV fluid-bed catalytic cracking unit 6.3.2.3 Orthoflow fluid-bed catalytic cracking 6.3.2.4 Shell two-stage fluid-bed catalytic cracking 6.3.2.5 Universal oil products fluid-bed catalytic cracking 6.3.3 Moving-bed processes 6.3.3.1 Airlift thermofor catalytic cracking (Socony airlift TCC process) 6.3.3.2 Houdresid catalytic cracking 6.3.3.3 Houdriflow catalytic cracking 6.3.3.4 Suspensoid catalytic cracking 6.3.4 Process variables 6.3.4.1 The reactor 6.3.4.2 Process parameters 6.3.4.3 Additives 6.3.4.4 Coking 6.4 Catalysts 6.4.1 Catalyst properties 6.4.2 Catalyst variables 6.4.3 Catalyst treatment 6.4.3.1 Demet process 6.4.3.2 Met-X process 6.5 Process options for heavy feedstocks 6.5.1 Asphalt residual treating process 6.5.2 Residue fluid catalytic cracking process 6.5.3 Heavy oil treating process 6.5.4 R2R process 6.5.5 Reduced crude oil conversion process 6.5.6 Shell fluid catalytic cracker process 6.5.7 S&W fluid catalytic cracking process 6.6 The future References 7 Deasphalting and dewaxing 7.1 Introduction 7.2 Commercial deasphalting processes 7.2.1 The deasphalting process 7.2.2 Process options for heavy feedstocks 7.2.2.1 Deep solvent deasphalting process 7.2.2.2 Demex process 7.2.2.3 MDS process 7.2.2.4 Residuum oil supercritical extraction process 7.2.2.5 Solvahl process 7.2.2.6 Lube deasphalting 7.3 Commercial dewaxing processes 7.3.1 Cold press process 7.3.2 Solvent dewaxing process 7.3.3 Urea dewaxing process 7.3.4 Centrifuge dewaxing process 7.3.5 Catalytic dewaxing process 7.4 The future 7.4.1 Deasphalting 7.4.2 Dewaxing References 8 Desulfurization, denitrogenation, and demetalization 8.1 Introduction 8.2 Rationale for hydroprocesses 8.3 Process options 8.4 Process parameters 8.4.1 Hydrogen partial pressure 8.4.2 Space velocity 8.4.3 Reaction temperature 8.4.4 Feedstock effects 8.5 Reactors 8.5.1 Downflow fixed-bed reactor 8.5.2 Upflow expanded-bed reactor 8.5.3 Demetallization reactor (guard bed reactor) 8.6 Commercial processes 8.6.1 Autofining process 8.6.2 Ferrofining process 8.6.3 Gulf hydrodesulfurization process 8.6.4 Hydrofining process 8.6.5 Isomax process 8.6.6 Ultrafining process 8.6.7 Unifining process 8.6.8 Unionfining process 8.7 Process options for heavy feedstocks 8.7.1 Residuum desulfurization (RDS) and vacuum residuum desulfurization (VRDS) process 8.7.2 Residfining process 8.8 Catalysts 8.9 Bioprocesses 8.9.1 Biodesulfurization 8.9.2 Biodenitrogenation 8.9.3 Biodemetallization 8.10 The future 8.10.1 Catalyst technology 8.10.2 Gasoline and diesel fuel polishing 8.10.3 Biofeedstocks References 9 Hydrocracking 9.1 Introduction 9.2 Commercial processes 9.2.1 Process design 9.2.2 Single-stage and two-stage options 9.2.3 Process variants 9.3 Catalysts 9.4 Process options for heavy feedstocks 9.4.1 Asphaltenic bottom cracking process 9.4.2 CANMET hydrocracking process 9.4.3 H-Oil process 9.4.4 Hydrovisbreaking process 9.4.5 Hyvahl F process 9.4.6 IFP hydrocracking process 9.4.7 Isocracking process 9.4.8 LC-Fining process 9.4.9 MAKfining process 9.4.10 Microcat-RC process 9.4.11 Mild hydrocracking process 9.4.12 MRH process 9.4.13 RCD Unibon process 9.4.14 Residfining process 9.4.15 Residue hydroconversion process 9.4.16 Tervahl-H process 9.4.17 Unicracking process 9.4.18 Veba Combi-Cracking process 9.5 The future References 10 Non–fossil fuel feedstocks 10.1 Introduction 10.2 Biomass 10.2.1 Chemical constituents 10.2.2 Carbohydrates 10.2.3 Vegetable oils 10.2.4 Plant fibers 10.2.5 Waste 10.2.6 Energy crops 10.2.6.1 Cordgrass and switchgrass 10.2.6.2 Jerusalem artichoke 10.2.6.3 Miscanthus 10.2.6.4 Reed plants 10.2.6.5 Residual herbaceous biomass 10.2.6.6 Short-rotation coppice 10.2.6.7 Sorghum 10.2.7 Wood 10.2.7.1 History 10.2.7.2 Types of wood 10.2.7.2.1 Hardwood 10.2.7.2.2 Softwood 10.2.8 Composition and properties 10.2.8.1 Chemical composition 10.2.8.1.1 Cellulose 10.2.8.1.2 Hemicellulose 10.2.8.1.3 Lignin 10.2.8.1.4 Solvent-extractable materials 10.2.9 Chemistry and uses 10.3 Waste 10.3.1 Domestic and industrial waste 10.3.2 Effects of waste References 11 Production of fuels from nonfossil fuel feedstocks 11.1 Introduction 11.2 Types of fuels 11.2.1 Gaseous fuels 11.2.2 Liquid fuels 11.2.3 Solid fuels 11.3 Fuel production 11.3.1 Anaerobic digestion 11.3.2 Combustion 11.3.3 Fermentation 11.3.4 Gasification 11.3.5 Incineration 11.3.5.1 Types of incinerators 11.3.5.2 Incineration plants 11.3.6 Landfilling 11.3.7 Pyrolysis 11.3.8 Other processes 11.3.8.1 Acid hydrolysis 11.3.8.2 Briquetting 11.3.8.3 Enzymatic hydrolysis 11.3.8.4 Transesterification References 12 Synthesis gas and the Fischer–Tropsch process 12.1 Introduction 12.2 Gasification of coal 12.2.1 Chemistry 12.2.2 Processes 12.2.3 Gasifiers 12.3 Gasification of crude oil fractions 12.3.1 Feedstocks 12.3.2 Chemistry 12.3.3 Commercial processes 12.3.3.1 Heavy residue gasification 12.3.3.2 Hybrid gasification process 12.3.3.3 Hydrocarbon gasification 12.3.3.4 Hypro process 12.3.3.5 Pyrolysis processes 12.3.3.6 Shell gasification process 12.3.3.7 Steam–methane reforming 12.3.3.8 Steam-naphtha reforming 12.3.3.9 Synthesis gas generation 12.3.3.10 Texaco gasification process 12.4 Gasification of other feedstocks 12.5 The Fischer–Tropsch process 12.6 Fuels and petrochemicals 12.6.1 Gaseous fuels and chemicals 12.6.1.1 Ammonia 12.6.1.2 Hydrogen 12.6.1.3 Synthetic natural gas 12.6.2 Liquid fuels and chemicals 12.6.2.1 Fischer–Tropsch liquids 12.6.2.2 Methanol 12.6.2.3 Dimethyl ether 12.6.2.4 Methanol-to-gasoline and olefins 12.6.2.5 Other processes 12.7 The future References 13 Types and properties of fuels from nonfossil fuel sources 13.1 Introduction 13.2 Gaseous fuels 13.2.1 Synthetic/gases 13.2.1.1 Biogas 13.2.1.2 Blue water gas 13.2.1.3 Carbureted water gas 13.2.1.4 Coal gas and coke-oven gas 13.2.1.5 Producer gas 13.2.1.6 Refuse gas 13.2.1.7 Water gas 13.2.1.8 Wood gas 13.2.2 Composition and properties 13.2.2.1 Composition 13.2.2.2 Properties 13.2.2.2.1 Density 13.2.2.2.2 Heat of combustion 13.2.2.2.3 Volatility, flammability, and explosive properties 13.3 Liquid fuels 13.3.1 Methanol 13.3.2 Ethanol 13.3.3 Propanol and butanol 13.3.4 Hydrocarbon fuels 13.3.4.1 Naphtha and gasoline 13.3.4.2 Kerosene and diesel 13.3.5 Biodiesel 13.3.6 Other fuels 13.4 Solid fuels 13.4.1 Fuelwood 13.4.2 Logs and wood chips 13.4.3 Pellets and briquettes 13.4.3.1 Briquette manufacture 13.4.3.2 Bagasse briquettes 13.4.3.3 Sawdust briquettes 13.4.3.4 Urban waste briquettes 13.4.4 Charcoal 13.4.5 Coke 13.5 Fuel quality References 14 A biorefinery 14.1 Introduction 14.2 The biorefinery 14.3 Process options 14.3.1 Anaerobic digestion 14.3.2 Combustion 14.3.3 Fermentation and hydrolysis 14.3.4 Gasification 14.3.4.1 Gasification chemistry 14.3.4.2 Gasifiers 14.3.4.3 Synthesis gas 14.3.5 Pyrolysis 14.3.6 Transesterification 14.3.6.1 Feedstocks 14.3.6.2 Transesterification 14.3.6.3 Catalytic transesterification 14.3.6.4 Noncatalytic supercritical methanol transesterification 14.3.6.5 Process parameters 14.4 Benefits References 15 The refinery of the future and technology integration 15.1 Introduction 15.2 Refinery configurations 15.2.1 The conventional crude oil refinery 15.2.2 The biorefinery 15.2.3 The coal liquids refinery 15.2.4 The gasification refinery 15.2.4.1 Gasifiers 15.2.4.2 Fischer–Tropsch synthesis 15.2.5 The shale oil refinery 15.3 The future refinery References Conversion factors Heat content for various fuels Biomass energy conversions Mass conversions Volume and flow rate conversionsa Composition of selected feedstocks Biomass characteristics Glossary Index Back Cover