ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب The Refinery of the Future

دانلود کتاب پالایشگاه آینده

The Refinery of the Future

مشخصات کتاب

The Refinery of the Future

ویرایش: 2 
نویسندگان:   
سری:  
ISBN (شابک) : 012816994X, 9780128169940 
ناشر: Gulf Professional Publishing 
سال نشر: 2020 
تعداد صفحات: 647 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 14 مگابایت 

قیمت کتاب (تومان) : 47,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب The Refinery of the Future به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پالایشگاه آینده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب پالایشگاه آینده



پالایشگاه آینده، ویرایش دوم، دانش مفیدی را ارائه می دهد که به مهندس کمک می کند تا فرآیندهای درگیر، مواد اولیه، ترکیب و فناوری های آینده را درک کند. این مرجع با پوشش شیمی پایه، فرآیندهای تجاری در حال استفاده و نوآوری های آینده، ابزارهای مورد نیاز برای درک محصولات پالایشی، مواد اولیه و فرآیندهای حیاتی برای تبدیل مواد اولیه به نتایج مطلوب را در اختیار مهندسان و مدیران قرار می دهد. اطلاعات جدید در مورد سازندهای شیل تنگ و گزینه های فرآیند نفت سنگین برای عملیات امروز گنجانده شده است. این کتاب با تکمیل کاربردهای آینده در شیل، مایعات زیستی و پیکربندی پالایشگاه، به مهندسان و مدیران پالایشگاه این دانش را می‌دهد تا دارایی‌های پالایشگاه خود را به‌روزرسانی و ارتقا دهند.


توضیحاتی درمورد کتاب به خارجی

The Refinery of the Future, Second Edition, delivers useful knowledge that will help the engineer understand the processes involved, feedstocks, composition and future technologies. Covering the basic chemistry, commercial processes already in use and future innovation, this reference gives engineers and managers the tools needed to understand refining products, feedstocks, and the processes critical to convert feedstocks to desired outcomes. New information concerning tight shale formations and heavy oil process options is included for today’s operations. Rounding out with future uses in shale, bioliquids and refinery configurations, this book gives engineers and refinery managers the knowledge to update and upgrade their refinery assets.



فهرست مطالب

Cover
The Refinery of the Future
Copyright
Contents
Preface
1 Feedstock types and properties
	1.1 Introduction
	1.2 Terminology
		1.2.1 Conventional crude oil
		1.2.2 High-acid crudes
			1.2.2.1 Properties and character of naphthenic acids
			1.2.2.2 Naphthenic acid chemistry
			1.2.2.3 Total acid number and laboratory testing
		1.2.3 Opportunity crudes
		1.2.4 Foamy oil
		1.2.5 Tight oil
		1.2.6 Heavy crude oil
		1.2.7 Extra heavy oil
		1.2.8 Tar sand bitumen
	1.3 Occurrence and reserves
		1.3.1 Conventional crude oil
		1.3.2 Heavy crude oil
		1.3.3 Extra heavy oil
			1.3.3.1 Tar sand bitumen
	1.4 Ultimate (elemental) composition
	1.5 Chemical composition
		1.5.1 Crude oil
	1.6 Fractional composition
		1.6.1 Distillation
			1.6.1.1 Gases and naphtha
			1.6.1.2 Middle distillates
			1.6.1.3 Vacuum residua
		1.6.2 Solvent methods
			1.6.2.1 Asphaltene separation
			1.6.2.2 Fractionation
		1.6.3 Adsorption methods
			1.6.3.1 General methods
			1.6.3.2 US Bureau of Mines-American Petroleum Institute and Saturates, Aromatic Derivatives, Resins, and Asphaltenes methods
			1.6.3.3 ASTM methods
	1.7 Crude oil products
	1.8 Petrochemicals
	References
2 Introduction to refining processes
	2.1 Introduction
	2.2 Refinery configurations
	2.3 Refinery processes
		2.3.1 Dewatering and desalting
		2.3.2 Distillation
			2.3.2.1 Atmospheric distillation
			2.3.2.2 Vacuum distillation
			2.3.2.3 Azeotropic distillation and extractive distillation
		2.3.3 Thermal (noncatalytic) processes
			2.3.3.1 Thermal cracking
			2.3.3.2 Visbreaking
			2.3.3.3 Coking
				2.3.3.3.1 Delayed coking
				2.3.3.3.2 Fluid Coking
		2.3.4 Catalytic cracking processes
			2.3.4.1 Fluid-bed catalytic cracking
			2.3.4.2 Moving-bed catalytic cracking
			2.3.4.3 Fixed-bed catalytic cracking
			2.3.4.4 Catalysts
		2.3.5 Hydroprocesses
			2.3.5.1 Hydrotreating
			2.3.5.2 Hydrocracking
		2.3.6 Reforming
			2.3.6.1 Thermal reforming
			2.3.6.2 Catalytic reforming
			2.3.6.3 Catalysts
		2.3.7 Isomerization
			2.3.7.1 Processes
			2.3.7.2 Catalysts
		2.3.8 Alkylation processes
			2.3.8.1 Processes
			2.3.8.2 Catalysts
		2.3.9 Polymerization processes
			2.3.9.1 Processes
			2.3.9.2 Catalysts
			2.3.9.3 Dewaxing
		2.3.10 Gas cleaning
		2.3.11 Ancillary operations
	2.4 The future
	References
3 Refining chemistry
	3.1 Introduction
	3.2 Cracking
		3.2.1 Thermal cracking
			3.2.1.1 General chemistry
			3.2.1.2 Asphaltene chemistry
			3.2.1.3 Process chemistry
		3.2.2 Catalytic cracking
			3.2.2.1 General chemistry
			3.2.2.2 Coke formation
	3.3 Hydroprocesses
		3.3.1 Hydrocracking
			3.3.1.1 General chemistry
			3.3.1.2 Asphaltene chemistry
			3.3.1.3 Catalysts
		3.3.2 Hydrotreating
			3.3.2.1 General chemistry
			3.3.2.2 Asphaltene chemistry
			3.3.2.3 Catalysts
	3.4 Other reactions
		3.4.1 Dehydrogenation
		3.4.2 Dehydrocyclization
		3.4.3 Isomerization
		3.4.4 Alkylation
		3.4.5 Polymerization
	3.5 Instability and incompatibility
		3.5.1 Definitions and terminology
		3.5.2 General chemistry
		3.5.3 Test methods
		3.5.4 Determination of instability and incompatibility
			3.5.4.1 Elemental analysis
			3.5.4.2 Density/specific gravity
			3.5.4.3 Volatility
			3.5.4.4 Viscosity
			3.5.4.5 Asphaltene content
			3.5.4.6 Pour point
			3.5.4.7 Acidity
			3.5.4.8 Metal content
			3.5.4.9 Water content, salt content, and bottom sediment and water
	3.6 The future
	References
4 Distillation
	4.1 Introduction
	4.2 Current processes and equipment
		4.2.1 Atmospheric distillation
		4.2.2 Vacuum distillation
		4.2.3 Columns
		4.2.4 Tray columns
		4.2.5 Packed columns
	4.3 Other processes
		4.3.1 Stripping
		4.3.2 Rerunning
		4.3.3 Stabilization and light end removal
		4.3.4 Superfractionation
		4.3.5 Azeotropic distillation
		4.3.6 Extractive distillation
		4.3.7 Process options for viscous feedstocks
	4.4 The future
		4.4.1 Distillation units
		4.4.2 Combating corrosion
		4.4.3 Refinery feedstocks
	References
5 Thermal cracking
	5.1 Introduction
	5.2 Early processes
	5.3 Commercial processes
		5.3.1 Visbreaking
		5.3.2 Coking processes
			5.3.2.1 Delayed coking
			5.3.2.2 Fluid coking
			5.3.2.3 Flexicoking
	5.4 Process options for heavy feedstocks
		5.4.1 Aquaconversion process
		5.4.2 Asphalt coking technology process
		5.4.3 Cherry-P (comprehensive heavy ends reforming refinery) process
		5.4.4 Decarbonizing process
		5.4.5 ET-II process
		5.4.6 Eureka process
		5.4.7 Fluid thermal cracking process
		5.4.8 High conversion soaker cracking process
		5.4.9 Mixed-phase cracking
		5.4.10 Selective cracking
		5.4.11 Shell thermal cracking
		5.4.12 Tervahl-T process
	5.5 The future
	References
6 Catalytic cracking
	6.1 Introduction
	6.2 Early processes
	6.3 Commercial processes
		6.3.1 Fixed-bed processes
		6.3.2 Fluid-bed processes
			6.3.2.1 Fluid-bed catalytic cracking
			6.3.2.2 Model IV fluid-bed catalytic cracking unit
			6.3.2.3 Orthoflow fluid-bed catalytic cracking
			6.3.2.4 Shell two-stage fluid-bed catalytic cracking
			6.3.2.5 Universal oil products fluid-bed catalytic cracking
		6.3.3 Moving-bed processes
			6.3.3.1 Airlift thermofor catalytic cracking (Socony airlift TCC process)
			6.3.3.2 Houdresid catalytic cracking
			6.3.3.3 Houdriflow catalytic cracking
			6.3.3.4 Suspensoid catalytic cracking
		6.3.4 Process variables
			6.3.4.1 The reactor
			6.3.4.2 Process parameters
			6.3.4.3 Additives
			6.3.4.4 Coking
	6.4 Catalysts
		6.4.1 Catalyst properties
		6.4.2 Catalyst variables
		6.4.3 Catalyst treatment
			6.4.3.1 Demet process
			6.4.3.2 Met-X process
	6.5 Process options for heavy feedstocks
		6.5.1 Asphalt residual treating process
		6.5.2 Residue fluid catalytic cracking process
		6.5.3 Heavy oil treating process
		6.5.4 R2R process
		6.5.5 Reduced crude oil conversion process
		6.5.6 Shell fluid catalytic cracker process
		6.5.7 S&W fluid catalytic cracking process
	6.6 The future
	References
7 Deasphalting and dewaxing
	7.1 Introduction
	7.2 Commercial deasphalting processes
		7.2.1 The deasphalting process
		7.2.2 Process options for heavy feedstocks
			7.2.2.1 Deep solvent deasphalting process
			7.2.2.2 Demex process
			7.2.2.3 MDS process
			7.2.2.4 Residuum oil supercritical extraction process
			7.2.2.5 Solvahl process
			7.2.2.6 Lube deasphalting
	7.3 Commercial dewaxing processes
		7.3.1 Cold press process
		7.3.2 Solvent dewaxing process
		7.3.3 Urea dewaxing process
		7.3.4 Centrifuge dewaxing process
		7.3.5 Catalytic dewaxing process
	7.4 The future
		7.4.1 Deasphalting
		7.4.2 Dewaxing
	References
8 Desulfurization, denitrogenation, and demetalization
	8.1 Introduction
	8.2 Rationale for hydroprocesses
	8.3 Process options
	8.4 Process parameters
		8.4.1 Hydrogen partial pressure
		8.4.2 Space velocity
		8.4.3 Reaction temperature
		8.4.4 Feedstock effects
	8.5 Reactors
		8.5.1 Downflow fixed-bed reactor
		8.5.2 Upflow expanded-bed reactor
		8.5.3 Demetallization reactor (guard bed reactor)
	8.6 Commercial processes
		8.6.1 Autofining process
		8.6.2 Ferrofining process
		8.6.3 Gulf hydrodesulfurization process
		8.6.4 Hydrofining process
		8.6.5 Isomax process
		8.6.6 Ultrafining process
		8.6.7 Unifining process
		8.6.8 Unionfining process
	8.7 Process options for heavy feedstocks
		8.7.1 Residuum desulfurization (RDS) and vacuum residuum desulfurization (VRDS) process
		8.7.2 Residfining process
	8.8 Catalysts
	8.9 Bioprocesses
		8.9.1 Biodesulfurization
		8.9.2 Biodenitrogenation
		8.9.3 Biodemetallization
	8.10 The future
		8.10.1 Catalyst technology
		8.10.2 Gasoline and diesel fuel polishing
		8.10.3 Biofeedstocks
	References
9 Hydrocracking
	9.1 Introduction
	9.2 Commercial processes
		9.2.1 Process design
		9.2.2 Single-stage and two-stage options
		9.2.3 Process variants
	9.3 Catalysts
	9.4 Process options for heavy feedstocks
		9.4.1 Asphaltenic bottom cracking process
		9.4.2 CANMET hydrocracking process
		9.4.3 H-Oil process
		9.4.4 Hydrovisbreaking process
		9.4.5 Hyvahl F process
		9.4.6 IFP hydrocracking process
		9.4.7 Isocracking process
		9.4.8 LC-Fining process
		9.4.9 MAKfining process
		9.4.10 Microcat-RC process
		9.4.11 Mild hydrocracking process
		9.4.12 MRH process
		9.4.13 RCD Unibon process
		9.4.14 Residfining process
		9.4.15 Residue hydroconversion process
		9.4.16 Tervahl-H process
		9.4.17 Unicracking process
		9.4.18 Veba Combi-Cracking process
	9.5 The future
	References
10 Non–fossil fuel feedstocks
	10.1 Introduction
	10.2 Biomass
		10.2.1 Chemical constituents
		10.2.2 Carbohydrates
		10.2.3 Vegetable oils
		10.2.4 Plant fibers
		10.2.5 Waste
		10.2.6 Energy crops
			10.2.6.1 Cordgrass and switchgrass
			10.2.6.2 Jerusalem artichoke
			10.2.6.3 Miscanthus
			10.2.6.4 Reed plants
			10.2.6.5 Residual herbaceous biomass
			10.2.6.6 Short-rotation coppice
			10.2.6.7 Sorghum
		10.2.7 Wood
			10.2.7.1 History
			10.2.7.2 Types of wood
				10.2.7.2.1 Hardwood
				10.2.7.2.2 Softwood
		10.2.8 Composition and properties
			10.2.8.1 Chemical composition
				10.2.8.1.1 Cellulose
				10.2.8.1.2 Hemicellulose
				10.2.8.1.3 Lignin
				10.2.8.1.4 Solvent-extractable materials
		10.2.9 Chemistry and uses
	10.3 Waste
		10.3.1 Domestic and industrial waste
		10.3.2 Effects of waste
	References
11 Production of fuels from nonfossil fuel feedstocks
	11.1 Introduction
	11.2 Types of fuels
		11.2.1 Gaseous fuels
		11.2.2 Liquid fuels
		11.2.3 Solid fuels
	11.3 Fuel production
		11.3.1 Anaerobic digestion
		11.3.2 Combustion
		11.3.3 Fermentation
		11.3.4 Gasification
		11.3.5 Incineration
			11.3.5.1 Types of incinerators
			11.3.5.2 Incineration plants
		11.3.6 Landfilling
		11.3.7 Pyrolysis
		11.3.8 Other processes
			11.3.8.1 Acid hydrolysis
			11.3.8.2 Briquetting
			11.3.8.3 Enzymatic hydrolysis
			11.3.8.4 Transesterification
	References
12 Synthesis gas and the Fischer–Tropsch process
	12.1 Introduction
	12.2 Gasification of coal
		12.2.1 Chemistry
		12.2.2 Processes
		12.2.3 Gasifiers
	12.3 Gasification of crude oil fractions
		12.3.1 Feedstocks
		12.3.2 Chemistry
		12.3.3 Commercial processes
			12.3.3.1 Heavy residue gasification
			12.3.3.2 Hybrid gasification process
			12.3.3.3 Hydrocarbon gasification
			12.3.3.4 Hypro process
			12.3.3.5 Pyrolysis processes
			12.3.3.6 Shell gasification process
			12.3.3.7 Steam–methane reforming
			12.3.3.8 Steam-naphtha reforming
			12.3.3.9 Synthesis gas generation
			12.3.3.10 Texaco gasification process
	12.4 Gasification of other feedstocks
	12.5 The Fischer–Tropsch process
	12.6 Fuels and petrochemicals
		12.6.1 Gaseous fuels and chemicals
			12.6.1.1 Ammonia
			12.6.1.2 Hydrogen
			12.6.1.3 Synthetic natural gas
		12.6.2 Liquid fuels and chemicals
			12.6.2.1 Fischer–Tropsch liquids
			12.6.2.2 Methanol
			12.6.2.3 Dimethyl ether
			12.6.2.4 Methanol-to-gasoline and olefins
			12.6.2.5 Other processes
	12.7 The future
	References
13 Types and properties of fuels from nonfossil fuel sources
	13.1 Introduction
	13.2 Gaseous fuels
		13.2.1 Synthetic/gases
			13.2.1.1 Biogas
			13.2.1.2 Blue water gas
			13.2.1.3 Carbureted water gas
			13.2.1.4 Coal gas and coke-oven gas
			13.2.1.5 Producer gas
			13.2.1.6 Refuse gas
			13.2.1.7 Water gas
			13.2.1.8 Wood gas
		13.2.2 Composition and properties
			13.2.2.1 Composition
			13.2.2.2 Properties
				13.2.2.2.1 Density
				13.2.2.2.2 Heat of combustion
				13.2.2.2.3 Volatility, flammability, and explosive properties
	13.3 Liquid fuels
		13.3.1 Methanol
		13.3.2 Ethanol
		13.3.3 Propanol and butanol
		13.3.4 Hydrocarbon fuels
			13.3.4.1 Naphtha and gasoline
			13.3.4.2 Kerosene and diesel
		13.3.5 Biodiesel
		13.3.6 Other fuels
	13.4 Solid fuels
		13.4.1 Fuelwood
		13.4.2 Logs and wood chips
		13.4.3 Pellets and briquettes
			13.4.3.1 Briquette manufacture
			13.4.3.2 Bagasse briquettes
			13.4.3.3 Sawdust briquettes
			13.4.3.4 Urban waste briquettes
		13.4.4 Charcoal
		13.4.5 Coke
	13.5 Fuel quality
	References
14 A biorefinery
	14.1 Introduction
	14.2 The biorefinery
	14.3 Process options
		14.3.1 Anaerobic digestion
		14.3.2 Combustion
		14.3.3 Fermentation and hydrolysis
		14.3.4 Gasification
			14.3.4.1 Gasification chemistry
			14.3.4.2 Gasifiers
			14.3.4.3 Synthesis gas
		14.3.5 Pyrolysis
		14.3.6 Transesterification
			14.3.6.1 Feedstocks
			14.3.6.2 Transesterification
			14.3.6.3 Catalytic transesterification
			14.3.6.4 Noncatalytic supercritical methanol transesterification
			14.3.6.5 Process parameters
	14.4 Benefits
	References
15 The refinery of the future and technology integration
	15.1 Introduction
	15.2 Refinery configurations
		15.2.1 The conventional crude oil refinery
		15.2.2 The biorefinery
		15.2.3 The coal liquids refinery
		15.2.4 The gasification refinery
			15.2.4.1 Gasifiers
			15.2.4.2 Fischer–Tropsch synthesis
		15.2.5 The shale oil refinery
	15.3 The future refinery
	References
Conversion factors
	Heat content for various fuels
	Biomass energy conversions
	Mass conversions
	Volume and flow rate conversionsa
	Composition of selected feedstocks
	Biomass characteristics
Glossary
Index
Back Cover




نظرات کاربران