دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Henry Han. Erich Baker
سری: Communications in Computer and Information Science, 1725
ISBN (شابک) : 9783031233869, 9783031233876
ناشر: Springer
سال نشر: 2022
تعداد صفحات: [234]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 24 Mb
در صورت تبدیل فایل کتاب The Recent Advances in Transdisciplinary Data Science. First Southwest Data Science Conference, SDSC 2022 Waco, TX, USA, March 25–26, 2022 Revised Selected Papers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفت های اخیر در علم داده بین رشته ای. اولین کنفرانس علوم داده جنوب غربی، SDSC 2022 Waco، TX، ایالات متحده، 25 تا 26 مارس 2022 مقالات منتخب اصلاح شده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مجموعه مقالات داوری اولین کنفرانس علوم داده جنوب غربی، در زمینه پیشرفتهای اخیر در علم داده بین رشتهای، SDSC 2022 است که در Waco، TX، ایالات متحده آمریکا، طی 25 تا 26 مارس 2022 برگزار شد. 14 مقاله کامل و 2 مقاله کوتاه موجود در این کتاب به دقت بررسی و از بین 72 مورد ارسالی انتخاب شد. آنها در بخش های موضوعی به شرح زیر سازماندهی شدند: علوم داده های تجاری و اجتماعی. علوم بهداشتی و داده های بیولوژیکی؛ علوم داده کاربردی، هوش مصنوعی و مهندسی داده.
This book constitutes the refereed proceedings of the First Southwest Data Science Conference, on The Recent Advances in Transdisciplinary Data Science, SDSC 2022, held in Waco, TX, USA, during March 25–26, 2022. The 14 full papers and 2 short papers included in this book were carefully reviewed and selected from 72 submissions. They were organized in topical sections as follows: Business and social data science; Health and biological data science; Applied data science, artificial intelligence, and data engineering.
Preface Organization The Convergence of BI and AI: With Applications for the Better Management of Higher Education (Keynote) Contents Business and Social Data Science Forecasting Stock Excess Returns with SEC 8-K Filings 1 Introduction 2 Data Preprocessing, Text Vectorization, and Imbalanced Learning Forecast 2.1 Text Vectorization 3 Dimension Reduction Stacking 4 Results 4.1 Dimension Reduction Stacking Under the BERT Vectorization 4.2 Stock Excess Return Forecast Under Imbalance Resampling 5 Discussion and Conclusion References A Fast Initial Response Approach to Sequential Financial Surveillance 1 Introduction 2 Geometric Random Walk with Log-Student's t Increments 3 Robust Model Calibration 3.1 Minimum Covariance Determinant (MCD) 3.2 Minimum Density Power Divergence (MDPD) 4 Statistical Process Monitoring 4.1 Taut String (TS) Fast Initial Response (FIR) Chart 5 Example 6 Summary and Conclusions References Evaluation of High-Value Patents in the Reverse Innovation: A Theory and Case Study from China 1 Introduction 2 Literature Review and Theoretical Foundation 2.1 Reverse Innovation of Local Companies 2.2 High-Value Patents 2.3 Evaluation of Patent Value 2.4 The Connotation of High-Value Patent in the Reverse Innovation 3 The Methods of Selection and Evaluation of High-Value Patents 3.1 The Selection of High-Value Patents in the Reverse Innovation 3.2 The Process of Evaluation of High-Value Patents 4 Case Study 4.1 BYD Company and Its Reverse Innovation 4.2 Selection of High-Value Patents in BYD'S Reverse Innovation 4.3 Discussion 5 Conclusions References Research on the Influence of Different Fairness Reference Points on the Supply Chain Enterprises 1 Introduction 2 Model Description 3 Decisions Under Different Fairness Reference Points 3.1 SUpplier’s Profit Reference Point 3.2 Nash Bargaining Solution Reference Point 3.3 FIrm’s Contribution Reference Point 4 Comparing the Optimal Order Quantities 5 Numerical Analysis 5.1 The Impact of Parameter 5.2 The Impact of Parameters and 6 Conclusion Appendix References Health and Biological Data Science EGRE: Calculating Enrichment Between Genomic Regions 1 Introduction 2 Results 2.1 EGRE is a Customizable Tool to Calculate Enrichment Between Pairs of Genomic Interval Files 2.2 GC Matched Permutations Improve the Accuracy of Enrichment Results 2.3 Parallelization Using Multithreading Reduces the Elapsed Time for Analysis 3 Methods 3.1 Implementation of EGRE 3.2 Implementation of GC Matching for Shuffled Genomic Regions 3.3 Functional Genomics and Simulated Data Used for Experiments 3.4 Benchmark Analysis 3.5 Code Availability 4 Conclusions References THSLRR: A Low-Rank Subspace Clustering Method Based on Tired Random Walk Similarity and Hypergraph Regularization Constraints 1 Introduction 2 Method 2.1 Sparse Low-Rank Representation 2.2 Hypergraph Regularization 2.3 Tired Random Walk 2.4 Objective Function of THSLRR 2.5 Optimization Process and Spectral Clustering of THSLRR Method 3 Results and Discussion 3.1 Evaluation Measurements 3.2 scRNA-seq Datasets 3.3 Parameters Setting 3.4 Comparative Analysis of Clustering 3.5 Visualize Cells Using t-SNE 3.6 Gene Markers Prioritization 4 Conclusion References Traceability Analysis of Feng-Flavour Daqu in China 1 Introduction 2 Materials and Methods 2.1 Sample Collection 2.2 Microbial High-Throughput Sequencing Analysis of Traceable Samples 2.3 Traceability Analysis of Brewing Microorganisms 3 Results 3.1 Analysis of Fungal Community Diversity in Feng-Flavour Daqu and Its Environment 3.2 Diversity Analysis of Bacteria and Environmental Communities in Feng-Flavour Daqu 3.3 Microbial Traceability Analysis of Feng-Flavour Daqu 4 Discussion and Conclusion References Visualization of Functional Assignment of Disease Genes and Mutations 1 Introduction 2 Identification and Visualization of Biological Process Functions 3 Data, Experiments, and Result 3.1 Gene and Mutation Data 3.2 Result with UniProt Humsavar Mutations Data 3.3 Results with the ClinVar Mutation Database 4 Results and Discussion 5 Conclusions References Applied Data Science, Artificial Intelligence, and Data Engineering Characterizing In-Situ Solar Wind Observations Using Clustering Methods 1 Introduction: The Solar Wind 2 K-Means: Spatially Separate Clusters 2.1 ICME Characterization 3 UMAP: Latent Features 4 Conclusion References An Improved Capsule Network for Speech Emotion Recognition 1 Introduction 2 The Proposed Methods 3 Datasets and Feature Extraction 3.1 Baseline Datasets 3.2 Augmented Datasets 3.3 Feature Extraction 4 Experiments and Analysis 4.1 Experimental Setup 4.2 Model Parameter Configuration 4.3 Data Division Methods 4.4 Experimental Results and Analysis 5 Conclusion References Distributed Query Processing and Reasoning Over Linked Big Data 1 Introduction 2 Related Work 3 Method 3.1 Data Storage Format, Query Planning, Evaluation, and Optimization 4 Evaluation 4.1 System Setup 4.2 Dataset 4.3 Results 5 Conclusion References Normal Equilibrium Fluctuations from Chaotic Trajectories: Coupled Logistic Maps 1 Introduction 2 Discussion 3 Conclusions References Matching Code Patterns Across Programming Language 1 Introduction 2 ReSSA 3 Parser Construction 4 Conclusion References Partitionable Programs Using Tyro V2 1 Introduction 2 Related Work 2.1 Tyro 2.2 Similar Tools 2.3 Graphical Program Representations 3 Tyro V2 3.1 Program Analyzer 3.2 Operation Translator 3.3 Code Generator and Verifier 3.4 Example Translated Program 4 Graph Based Extraction 5 The Model 6 Conclusion and Future Work References Analyzing Technical Debt by Mapping Production Logs with Source Code 1 Introduction 2 Background and Related Work 2.1 Technical Debt 2.2 Code Smells 2.3 Architectural Degradation 2.4 Static Code Analysis 2.5 Tools 2.6 Log Analysis 3 Method 4 Case Study 4.1 Threats to Validity 5 Conclusion and Future Work References EB-FedAvg: Personalized and Training Efficient Federated Learning with Early-Bird Tickets 1 Introduction 2 Related Works 3 Design of EB-fedAvg 3.1 Training Algorithm 3.2 Structured Pruning 3.3 Early Bird Ticket Masked Weights 3.4 Aggregate Heterogeneous Weight Masks 3.5 Generate Personalized Model 4 Evaluation 4.1 Datasets, and Models 4.2 Hyper-Parameter Setting 4.3 Compared Methods 4.4 Evaluation Metrics 4.5 Training Performance 5 Conclusion References Author Index