دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [3rd ed.]
نویسندگان: Jean-Louis Basdevant. Jean Dalibard
سری:
ISBN (شابک) : 9783030137236
ناشر: Springer International Publishing
سال نشر: 2019
تعداد صفحات: XIII, 352
[343]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 Mb
در صورت تبدیل فایل کتاب The Quantum Mechanics Solver: How to Apply Quantum Theory to Modern Physics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حلکننده مکانیک کوانتومی: نحوه اعمال نظریه کوانتومی در فیزیک مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی مسائلی را با راهحلهای دقیق ارائه میکند که نحوه اعمال نظریه کوانتومی را در فیزیک مدرن نشان میدهد. متن به سه بخش تقسیم میشود، بخش اول به ذرات بنیادی، هستهها و اتمها میپردازد، بخش دوم درهم تنیدگی و اندازهگیری کوانتومی را ارائه میکند. در نهایت سیستم های پیچیده به صورت عمیق مورد بررسی قرار می گیرند. هدف این متن هدایت دانشآموز به سمت استفاده از مکانیک کوانتومی در مسائل تحقیق است. دانشجویان کارشناسی ارشد و دانشجویان کارشناسی ارشد منبع غنی و چالش برانگیزی برای بهبود مهارت های خود خواهند یافت.
این نسخه جدید با بخش هایی در مورد نوسانات نوترینو، گرداب های کوانتیزه شده در میعانات بوز-اینشتین گسترش یافته است. ، همبستگی های کوانتومی در سیستم های چند ذره ای، نوسانات بلوخ در شبکه های تناوبی و اندازه گیری های کوانتومی غیر مخرب.
This textbook presents problems with detailed solutions showing how to apply quantum theory to modern physics. The text is divided in three parts, the first dealing with elementary particles, nuclei and atoms, the second presents quantum entanglement and measurement. Finally complex systems are examinated in depth. The aim of the text is to guide the student towards applying quantum mechanics to research problems. Advanced undergraduates and graduate students will find a rich and challenging source for improving their skills.
This new edition has been extended with sections on neutrino oscillations, quantized vortices in Bose-Einstein condensates, quantum correlations in multi-particle systems, Bloch oscillations in periodic lattices and non-destructive quantum measurements.
Preface to the Third Edition Acknowledgements Contents Part I Elementary Particles, Nuclei and Atoms 1 Matter-Wave Interferences with Molecules 1.1 Helium Dimers and Trimers 1.2 Interferences of Large Material Particles 1.3 Solutions 1.3.1 Helium Dimers and Trimers 1.3.2 Interferences of Large Material Particles 1.3.3 References 2 Neutron Interferometry 2.1 Neutron Interferences 2.2 The Gravitational Effect 2.3 Rotating a Spin 1/2 by 360 Degrees 2.4 Solutions 2.4.1 Neutron Interferences 2.4.2 The Gravitational Effect 2.4.3 Rotating a Spin 1/2 by 360 Degrees 2.4.4 References 3 Analysis of a Stern–Gerlach Experiment 3.1 Preparation of the Neutron Beam 3.2 Spin State of the Neutrons 3.3 The Stern–Gerlach Experiment 3.4 Solutions 3.4.1 Preparation of the Neutron Beam 3.4.2 Spin State of the Neutrons 3.4.3 The Stern-Gerlach Experiment 4 Spectroscopic Measurements on a Neutron Beam 4.1 The Ramsey Method of Separated Oscillatory Fields 4.2 Solutions 5 Measuring the Electron Magnetic Moment Anomaly 5.1 Spin and Momentum Precession in a Magnetic Field 5.2 Solutions 6 Atomic Clocks 6.1 The Hyperfine Splitting of the Ground State 6.2 The Atomic Fountain 6.3 The GPS System 6.4 The Drift of Fundamental Constants 6.5 Solutions 6.5.1 Hyperfine Splitting of the Ground State 6.5.2 The Atomic Fountain 6.5.3 The GPS System 6.5.4 The Drift of Fundamental Constants 6.5.5 References 7 The Spectrum of Positronium 7.1 Positronium Orbital States 7.2 Hyperfine Splitting 7.3 Zeeman Effect in the Ground State 7.4 Decay of Positronium 7.5 Solutions 7.5.1 Positronium Orbital States 7.5.2 Hyperfine Splitting 7.5.3 Zeeman Effect in the Ground State 7.5.4 Decay of Positronium 7.5.5 References 8 Neutrino Transformations in the Sun 8.1 Neutrino Oscillations in Vacuum 8.2 Interaction of Neutrinos with Matter 8.3 Solutions 8.3.1 Neutrino Oscillations in the Vacuum 8.3.2 Interaction of Neutrinos with Matter 9 The Hydrogen Atom in Crossed Fields 9.1 The Hydrogen Atom in Crossed Electric and Magnetic Fields 9.2 Pauli\'s Result 9.3 Solutions 9.3.1 The Hydrogen Atom in Crossed Electric and Magnetic Fields 9.3.2 Pauli\'s Result 9.3.3 References 10 Energy Loss of Ions in Matter 10.1 Energy Absorbed by One Atom 10.2 Energy Loss in Matter 10.3 Solutions 10.3.1 Energy Absorbed by One Atom 10.3.2 Energy Loss in Matter 10.3.3 Comments Part II Quantum Entanglement and Measurement 11 The EPR Problem and Bell\'s Inequality 11.1 The Electron Spin 11.2 Correlations Between the Two Spins 11.3 Correlations in the Singlet State 11.4 A Simple Hidden Variable Model 11.5 Bell\'s Theorem and Experimental Results 11.6 Solutions 11.6.1 The Electron Spin 11.6.2 Correlations Between the Two Spins 11.6.3 Correlations in the Singlet State 11.6.4 A Simple Hidden Variable Model 11.6.5 Bell\'s Theorem and Experimental Results 11.6.6 References 12 Quantum Correlations in a Multi-particle System 12.1 Measurements on a Single Spin 12.2 Measurements on a Two-Spin System 12.3 Measurements on a Four-Spin System 12.4 Solutions 12.4.1 Measurements on a Single Spin 12.4.2 Measurements on a Two-Spin System 12.4.3 Measurements on a Four-Spin System 12.4.4 References 13 A Non-destructive Bomb Detector 13.1 A Neutron Beam Splitter 13.2 A Mach–Zehnder Interferometer for Neutrons 13.3 A First Step Towards a Non Destructive Detection 13.4 Towards an Efficient Non-destructive Detection 13.5 Solutions 13.5.1 A Neutron Beam Splitter 13.5.2 A Mach-Zehnder Interferometer for Neutrons 13.5.3 A First Step Towards a Non Destructive Detection 13.5.4 Towards an Efficient Non-destructive Detection 13.5.5 References 14 Direct Observation of Field Quantization 14.1 Quantization of a Mode of the Electromagnetic Field 14.2 The Coupling of the Field with an Atom 14.3 Interaction of the Atom with an ``Empty\'\' Cavity 14.4 Interaction of an Atom with a Quasi-classical State 14.5 Large Numbers of Photons: Damping and Revivals 14.6 Solutions 14.6.1 Quantization of a Mode of the Electromagnetic Field 14.6.2 The Coupling of the Field with an Atom 14.6.3 Interaction of the Atom and an ``Empty\'\' Cavity 14.6.4 Interaction of an Atom with a Quasi-classical State 14.6.5 Large Numbers of Photons: Damping and Revivals 14.6.6 Comments 15 Schrödinger\'s Cat 15.1 The Quasi-classical States of a Harmonic Oscillator 15.2 Construction of a Schrödinger-Cat State 15.3 Quantum Superposition Versus Statistical Mixture 15.4 The Fragility of a Quantum Superposition 15.5 Solutions 15.5.1 The Quasi-classical States of a Harmonic Oscillator 15.5.2 Construction of a Schrödinger-Cat State 15.5.3 Quantum Superposition Versus Statistical Mixture 15.5.4 The Fragility of a Quantum Superposition 15.5.5 Comments 16 Quantum Cryptography 16.1 Preliminaries 16.2 Correlated Pairs of Spins 16.3 The Quantum Cryptography Procedure 16.4 Solutions 16.4.1 Preliminaries 16.4.2 Correlated Pairs of Spins 16.4.3 The Quantum Cryptography Procedure 16.4.4 References 17 Ideal Quantum Measurement 17.1 A Von Neumann Detector 17.2 Phase States of the Harmonic Oscillator 17.3 The Interaction Between the System and the Detector 17.4 An ``Ideal\'\' Measurement 17.5 Solutions 17.5.1 A Von Neumann Detector 17.5.2 Phase States of the Harmonic Oscillator 17.5.3 The Interaction Between the System and the Detector 17.5.4 An ``Ideal\'\' Measurement 17.5.5 Comments 18 The Quantum Eraser 18.1 Magnetic Resonance 18.2 Ramsey Fringes 18.3 Detection of the Neutron Spin State 18.4 A Quantum Eraser 18.5 Solutions 18.5.1 Magnetic Resonance 18.5.2 Ramsey Fringes 18.5.3 Detection of the Neutron Spin State 18.5.4 A Quantum Eraser 18.5.5 Comments 19 A Quantum Thermometer 19.1 The Penning Trap in Classical Mechanics 19.2 The Penning Trap in Quantum Mechanics 19.3 Coupling of the Cyclotron and Axial Motions 19.4 A Quantum Thermometer 19.5 Solutions 19.5.1 The Penning Trap in Classical Mechanics 19.5.2 The Penning Trap in Quantum Mechanics 19.5.3 Coupling of the Cyclotron and Axial Motions 19.5.4 A Quantum Thermometer 20 Laser Cooling and Trapping 20.1 Optical Bloch Equations for an Atom at Rest 20.2 The Radiation Pressure Force 20.3 Doppler Cooling 20.4 The Dipole Force 20.5 Solutions 20.5.1 Optical Bloch Equations for an Atom at Rest 20.5.2 The Radiation Pressure Force 20.5.3 Doppler Cooling 20.5.4 The Dipole Force 20.5.5 Comments and References Part III Complex Systems 21 Exact Results for the Three-Body Problem 21.1 The Two-Body Problem 21.2 The Variational Method 21.3 Relating the Three-Body and Two-Body Sectors 21.4 The Three-Body Harmonic Oscillator 21.5 From Mesons to Baryons in the Quark Model 21.6 Solutions 21.6.1 The Two-Body Problem 21.6.2 The Variational Method 21.6.3 Relating the Three-Body and Two-Body Sectors 21.6.4 The Three-Body Harmonic Oscillator 21.6.5 From Mesons to Baryons in the Quark Model 21.6.6 References 22 Properties of a Bose–Einstein Condensate 22.1 Particle in a Harmonic Trap 22.2 Interactions Between Two Confined Particles 22.3 Energy of a Bose–Einstein Condensate 22.4 Condensates with Repulsive Interactions 22.5 Condensates with Attractive Interactions 22.6 Solutions 22.6.1 Particle in a Harmonic Trap 22.6.2 Interactions Between Two Confined Particles 22.6.3 Energy of a Bose–Einstein Condensate 22.6.4 Condensates with Repulsive Interactions 22.6.5 Condensates with Attractive Interactions 22.6.6 Comments and References 23 Quantized Vortices 23.1 Magnetic Trapping 23.2 The Two-Dimensional Harmonic Oscillator 23.3 Quantum Physics in a Rotating Frame 23.4 Nucleation of Quantized Vortices 23.5 Solutions 23.5.1 Magnetic Trapping 23.5.2 The Two-Dimensional Harmonic Oscillator 23.5.3 Quantum Physics in a Rotating Frame 23.5.4 Nucleation of Quantized Vortices 23.5.5 References 24 Motion in a Periodic Potential and Bloch Oscillations 24.1 The Two-Site Problem 24.2 The Infinite Periodic Chain 24.3 Dynamics Along the Infinite Chain 24.4 Bloch Oscillations 24.5 Solutions 24.5.1 The Two-Site Problem 24.5.2 The Infinite Periodic Chain 24.5.3 Dynamics Along the Infinite Chain 24.5.4 Bloch Oscillations 24.5.5 Discussion and References 25 Magnetic Excitons 25.1 The Molecule CsFeBr3 25.2 Spin–Spin Interactions in a Chain of Molecules 25.3 Energy Levels of the Chain 25.4 Vibrations of the Chain: Excitons 25.5 Solutions 25.5.1 The Molecule CsFeBr3 25.5.2 Spin–Spin Interactions in a Chain of Molecules 25.5.3 Energy Levels of the Chain 25.5.4 Vibrations of the Chain: Excitons 26 A Quantum Box 26.1 Results on the One-Dimensional Harmonic Oscillator 26.2 The Quantum Box 26.3 Quantum Box in a Magnetic Field 26.4 Experimental Verification 26.5 Anisotropy of a Quantum Box 26.6 Solutions 26.6.1 Results on the One-Dimensional Harmonic Oscillator 26.6.2 The Quantum Box 26.6.3 Quantum Box in a Magnetic Field 26.6.4 Experimental Verification 26.6.5 Anisotropy of a Quantum Box 26.6.6 Comments and References 27 Colored Molecular Ions 27.1 Hydrocarbon Ions 27.2 Nitrogenous Ions 27.3 Solutions 27.3.1 Hydrocarbon Ions 27.3.2 Nitrogenous Ions 28 Hyperfine Structure in Electron Spin Resonance 28.1 Hyperfine Interaction with One Nucleus 28.2 Hyperfine Structure with Several Nuclei 28.3 Experimental Results 28.4 Solutions 28.4.1 Hyperfine Interaction with One Nucleus 28.4.2 Hyperfine Structure with Several Nuclei 28.4.3 Experimental Results 29 Probing Matter with Positive Muons 29.1 Muonium in Vacuum 29.2 Muonium in Silicon 29.3 Solutions 29.3.1 Muonium in Vacuum 29.3.2 Muonium in Silicon 29.3.3 References 30 Quantum Reflection of Atoms from a Surface 30.1 The Hydrogen Atom–Liquid Helium Interaction 30.2 Excitations on the Surface of Liquid Helium 30.3 Quantum Interaction Between H and Liquid He 30.4 The Sticking Probability 30.5 Solutions 30.5.1 The Hydrogen Atom–Liquid Helium Interaction 30.5.2 Excitations on the Surface of Liquid Helium 30.5.3 Quantum Interaction Between H and Liquid He 30.5.4 The Sticking Probability 30.5.5 Comments and References Part IV Appendix 31 Appendix: Memento of Quantum Mechanics 31.1 Principles 31.1.1 Hilbert Space 31.1.2 Definition of the State of a System; Pure Case 31.1.3 Measurement 31.1.4 Evolution 31.1.5 Complete Set of Commuting Observables (CSCO) 31.1.6 Entangled States 31.1.7 Statistical Mixture and the Density Operator 31.2 General Results 31.2.1 Uncertainty Relations 31.2.2 Ehrenfest Theorem 31.3 The Particular Case of a Point-Like Particle; Wave Mechanics 31.3.1 The Wave Function 31.3.2 Operators 31.3.3 Continuity of the Wave Function 31.3.4 Position-Momentum Uncertainty Relations 31.4 Angular Momentum and Spin 31.4.1 Angular Momentum Observable 31.4.2 Eigenvalues of the Angular Momentum 31.4.3 Orbital Angular Momentum of a Particle 31.4.4 Spin 31.4.5 Addition of Angular Momenta 31.5 Exactly Soluble Problems 31.5.1 The Harmonic Oscillator 31.5.2 The Coulomb Potential (Bound States) 31.6 Approximation Methods 31.6.1 Time-Independent Perturbations 31.6.2 Variational Method for the Ground State 31.7 Identical Particles 31.8 Time-Evolution of Systems 31.8.1 Rabi Oscillation 31.8.2 Time-Dependent Perturbation Theory 31.8.3 Fermi\'s Golden Rule and Exponential Decay 31.9 Collision Processes 31.9.1 Born Approximation 31.9.2 Scattering by a Bound State 31.9.3 General Scattering Theory 31.9.4 Low Energy Scattering Author Index Subject Index