دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Abraham P. Punnen
سری:
ISBN (شابک) : 9783031045196, 9783031045202
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 323
زبان: EN
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب The Quadratic Unconstrained Binary Optimization Problem: Theory, Algorithms, and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مسئله بهینه سازی باینری بدون محدودیت درجه دوم: نظریه، الگوریتم ها و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
The quadratic binary optimization problem (QUBO) is a versatile combinatorial optimization model with a variety of applications and rich theoretical properties. Application areas of the model include finance, cluster analysis, traffic management, machine scheduling, VLSI physical design, physics, quantum computing, engineering, and medicine. In addition, various mathematical optimization models can be reformulated as a QUBO, including the resource constrained assignment problem, set partitioning problem, maximum cut problem, quadratic assignment problem, the bipartite unconstrained binary optimization problem, among others. This book presents a systematic development of theory, algorithms, and applications of QUBO. It offers a comprehensive treatment of QUBO from various viewpoints, including a historical introduction along with an in-depth discussion of applications modelling, complexity and polynomially solvable special cases, exact and heuristic algorithms, analysis of approximation algorithms, metaheuristics, polyhedral structure, probabilistic analysis, persistencies, and related topics. Available software for solving QUBO is also introduced, including public domain, commercial, as well as quantum computing based codes.
Preface Contents Contributors Acronyms 1 Introduction to QUBO 1.1 Introduction 1.2 The Ising Model 1.3 Representations of the Q Matrix 1.4 Some Equivalent Optimization Problems 1.4.1 QUBO as a Bilinear Program 1.4.2 The Maximum Cut Problem and QUBO 1.4.3 Equivalence with the Stable Set Problem 1.4.4 QUBO and the Generalized Stable Set Problem 1.4.5 Quadratic Pseudo-Boolean Optimization 1.5 Roof Duality 1.6 Model Building Using QUBO 1.6.1 Person Detection and Tracking in a Crowded Environment 1.6.2 Module Flipping in Circuit Layout Design 1.6.3 Side-Chain Positioning in Protein Design 1.6.4 QUBO and Machine Scheduling 1.7 Mixed Integer Programming Formulations 1.8 Conclusion References 2 Applications and Computational Advances for Solving the QUBO Model 2.1 Introduction 2.2 Applications of the QUBO Model 2.2.1 Additional Applications by Category 2.3 Creating QUBO Models 2.3.1 Creating QUBO Models: A General Purpose Approach 2.3.2 Illustrative Computational Experience 2.4 Summary and Conclusion References 3 Complexity and Polynomially Solvable Special Cases of QUBO 3.1 Introduction and Notations 3.2 Computational Complexity 3.3 Polynomially Solvable Matrix Structures 3.3.1 Linear Restrictions on the Cost Matrices 3.3.2 Low Rank Cost Matrices 3.3.2.1 The Special Case c=0 3.3.2.2 The General Case: cRn 3.4 Polynomially Solvable Graph Structures 3.4.1 QUBO and the Maximum Cut Problem 3.4.2 Stable Sets and Cliques 3.5 Pseudopolynomial and Subexponential Algorithms 3.5.1 Low Rank Cost Matrices 3.5.2 The Half-Product QUBO 3.5.3 Subexponential Algorithms 3.6 Conclusions References 4 The Boolean Quadric Polytope 4.1 Introduction 4.2 Elementary Polyhedral Theory 4.3 The Boolean Quadric Polytope 4.4 Some More Valid Inequalities 4.5 Some Related Polytopes 4.5.1 The Cut Polytope 4.5.2 Polytopes Which Exploit Sparsity 4.6 Some Other Related Convex Sets 4.6.1 A Non-polyhedral Convex Set 4.6.2 A Convex Set Related to Max-Cut 4.6.3 Cones 4.7 Algorithms 4.7.1 Cut-and-Branch 4.7.2 Separation Algorithms 4.7.3 Branch-and-Cut 4.8 Concluding Remarks References 5 Autarkies and Persistencies for QUBO 5.1 Introduction 5.2 Basic Definitions 5.3 Functional Pesistency 5.4 Autarkies 5.5 Polyhedral Persistency 5.6 Persistencies and Autarkies for Quadratic Functions and Posiforms References 6 Mathematical Programming Models and Exact Algorithms 6.1 Introduction 6.2 MILP Formulations 6.2.1 Compact MILP Formulations 6.3 QUBO and Semidefinite Programming 6.3.1 The QUBO Formulation and SDP 6.3.2 The Ising QUBO Formulation and SDP 6.3.3 Linearly Constrained Quadratic Problems and the Maximum Cut Problem 6.3.4 The Stable Set Problem 6.3.5 The Maximum k-Colorable Subgraph Problem 6.4 Upper Bounds by Decomposition 6.5 Variable Fixing 6.6 Algorithms and Solvers Appendix: Linear Programming and Duality References 7 The Random QUBO 7.1 Introduction 7.2 An Upper Bound on the Expected Optimal Value 7.3 Quadratic Convex Reformulation (QCR) 7.3.1 QCR Method for Determinsitic QUBO 7.3.2 QCR Methods for Random QUBO 7.3.3 Numerical Experiments 7.3.3.1 Random Instances 7.3.3.2 Robustness Tests Using Permutations 7.4 The Sherrington-Kirkpatrick Model References 8 Fast Heuristics and Approximation Algorithms 8.1 Introduction 8.2 Rounding Algorithms 8.3 The Normalized Relative Error 8.3.1 Average Value of Solutions of the Ising QUBO 8.4 Domination Analysis of Algorithms 8.5 Relative Performance Ratio and Approximation Algorithms 8.5.1 ε-Approximation Algorithms for the Ising QUBO 8.5.2 Computing ε-Optimal Solutions from SDP Relaxation 8.5.3 Other Special Cases 8.6 Conclusion References 9 Metaheuristic Algorithms 9.1 Basic Ingredients of Local Search 9.2 Fast Solving Heuristics 9.3 Local Search Based Methods 9.3.1 Simulated Annealing 9.3.2 Tabu Search 9.4 Population Based Search Methods 9.5 Selected Metaheuristic Approaches for QUBO 9.5.1 Diversification-Driven Tabu Search 9.5.2 Memetic Search 9.5.3 Path Relinking 9.5.4 Automatic Grammar-Based Design of Heuristic Algorithms 9.5.5 A Systematic Evaluation of Heuristics 9.6 Computational Results 9.6.1 Benchmark Instances 9.6.2 Computational Results on the QUBO Instances 9.6.3 Computational Results on the MaxCut Instances References 10 The Bipartite QUBO 10.1 Introduction 10.2 Applications 10.3 MILP Formulations 10.3.1 Compact Formulations 10.4 Polynomially Solvable Special Cases 10.4.1 Polynomially Solvable Biclique Problems 10.5 Approximation Algorithms 10.5.1 Domination Analysis 10.5.2 Approximation Algorithms for the Ising BQUBO 10.6 Local Search and Metaheuristics 10.6.1 Flip Based Neighborhoods 10.6.1.1 The Flip and Float Neighborhood 10.6.2 Metaheuristics 10.7 Exact Algorithms 10.8 Concluding Remarks References 11 QUBO Software 11.1 Introduction 11.2 General Purpose Solvers 11.3 Exact Solvers for QUBO 11.4 Heuristics for QUBO 11.5 QUBO Tools 11.6 Hardware for QUBO 11.7 Miscellaneous 11.8 Benchmark Instances References Index