ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب The Python Workshop: Learn to code in Python and kickstart your career in software development or data science

دانلود کتاب کارگاه آموزشی پایتون: کدنویسی در پایتون را بیاموزید و حرفه خود را در زمینه تولید نرم افزار یا علم داده شروع کنید

The Python Workshop: Learn to code in Python and kickstart your career in software development or data science

مشخصات کتاب

The Python Workshop: Learn to code in Python and kickstart your career in software development or data science

ویرایش:  
نویسندگان: , , , ,   
سری:  
ISBN (شابک) : 1839218851, 9781839218859 
ناشر: Packt Publishing 
سال نشر: 2019 
تعداد صفحات: 607 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 9 مگابایت 

قیمت کتاب (تومان) : 54,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب The Python Workshop: Learn to code in Python and kickstart your career in software development or data science به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کارگاه آموزشی پایتون: کدنویسی در پایتون را بیاموزید و حرفه خود را در زمینه تولید نرم افزار یا علم داده شروع کنید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کارگاه آموزشی پایتون: کدنویسی در پایتون را بیاموزید و حرفه خود را در زمینه تولید نرم افزار یا علم داده شروع کنید



مبانی کدنویسی پاک و مؤثر پایتون را بیاموزید و مهارت‌های عملی برای مقابله با پروژه‌های توسعه نرم‌افزار یا علم داده خود را ایجاد کنید

ویژگی‌های کلیدی

  • ایجاد مهارت های کلیدی پایتون با وظایف توسعه درگیر و فعالیت های چالش برانگیز
  • الگوریتم های مفید را پیاده سازی کنید و برنامه هایی را برای حل مشکلات دنیای واقعی بنویسید
  • از Python در پروژه های علم داده واقع گرایانه استفاده کنید و ساده ایجاد کنید مدل‌های یادگیری ماشین

توضیحات کتاب

آیا همیشه می‌خواستید پایتون را یاد بگیرید، اما هرگز کاملاً نمی‌دانستید چگونه شروع کنید؟

برنامه‌های کاربردی بیشتر از ما هستند. متوجه شوید که با استفاده از پایتون توسعه می یابند زیرا یادگیری، خواندن و نوشتن آن آسان است. اکنون می توانید با کمک این آموزش تعاملی، یادگیری زبان را به سرعت و به طور موثر شروع کنید.

کارگاه پایتون با نشان دادن نحوه صحیح اعمال نحو Python برای نوشتن برنامه های ساده و نحوه استفاده از ساختارهای Python مناسب شروع می شود. برای ذخیره و بازیابی داده ها خواهید دید که چگونه فایل‌ها را مدیریت کنید، با خطاها برخورد کنید، و از کلاس‌ها و روش‌ها برای نوشتن کد مختصر، قابل استفاده مجدد و کارآمد استفاده کنید.

با پیشروی، نحوه استفاده از کتابخانه استاندارد را خواهید فهمید. کد اشکال زدایی برای عیب یابی مشکلات، و نوشتن تست های واحد برای اعتبارسنجی رفتار برنامه.

در مورد استفاده از کتابخانه های پانداها و NumPy برای تجزیه و تحلیل داده ها، و کتابخانه های گرافیکی Matplotlib و Seaborn برای ایجاد داده های تاثیرگذار، بینش هایی به دست خواهید آورد. تجسم ها با تمرکز بر علم داده سطح ابتدایی، مهارت های پایتون عملی خود را به گونه ای ایجاد خواهید کرد که منعکس کننده توسعه دنیای واقعی باشد. در نهایت، مراحل کلیدی ساخت و استفاده از الگوریتم‌های یادگیری ماشینی ساده را کشف خواهید کرد.

در پایان این کتاب پایتون، دانش، مهارت‌ها و اعتماد به نفس لازم برای مقابله خلاقانه با پروژه‌های جاه‌طلبانه خود را خواهید داشت. با پایتون.

آنچه یاد خواهید گرفت

  • کدهای تمیز و با نظری مناسب بنویسید که نگهداری آن آسان است
  • خودکارسازی روزمره ضروری وظایف با اسکریپت‌های پایتون
  • اشکال‌های منطقی را اشکال‌زدایی کنید و استثناها را در برنامه‌های خود مدیریت کنید
  • مبانی علم داده را کاوش کنید و تجسم‌های جذاب ایجاد کنید
  • با یادگیری ماشینی پیش‌بینی‌کننده شروع کنید
  • li>
  • با آزمایش خودکار فرآیند توسعه خود را بدون اشکال نگه دارید

این کتاب برای چه کسی است

این کتاب برای هرکسی طراحی شده است که تازه وارد پایتون شده است. زبان برنامه نویسی. چه یک مهندس نرم افزار مشتاق یا دانشمند داده باشید، یا فقط در مورد یادگیری نحوه کدنویسی با پایتون کنجکاو باشید، این کتاب برای شما مناسب است. هیچ تجربه قبلی در برنامه نویسی مورد نیاز نیست.

فهرست مطالب

  1. Vital Python – ریاضی، رشته ها، شرط ها و حلقه ها
  2. ساختارهای Python
  3. اجرای پایتون – برنامه ها، الگوریتم ها و توابع
  4. توسعه پایتون، فایل ها، خطاها و نمودارها
  5. ساخت پایتون – کلاس ها و روش ها
  6. کتابخانه استاندارد
  7. پایتونیک شدن
  8. توسعه نرم افزار
  9. پایتون عملی – موضوعات پیشرفته
  10. تجزیه و تحلیل داده ها با پانداها و NumPy< li>آموزش ماشین

توضیحاتی درمورد کتاب به خارجی

Learn the fundamentals of clean, effective Python coding and build the practical skills to tackle your own software development or data science projects

Key Features

  • Build key Python skills with engaging development tasks and challenging activities
  • Implement useful algorithms and write programs to solve real-world problems
  • Apply Python in realistic data science projects and create simple machine learning models

Book Description

Have you always wanted to learn Python, but never quite known how to start?

More applications than we realize are being developed using Python because it is easy to learn, read, and write. You can now start learning the language quickly and effectively with the help of this interactive tutorial.

The Python Workshop starts by showing you how to correctly apply Python syntax to write simple programs, and how to use appropriate Python structures to store and retrieve data. You'll see how to handle files, deal with errors, and use classes and methods to write concise, reusable, and efficient code.

As you advance, you'll understand how to use the standard library, debug code to troubleshoot problems, and write unit tests to validate application behavior.

You'll gain insights into using the pandas and NumPy libraries for analyzing data, and the graphical libraries of Matplotlib and Seaborn to create impactful data visualizations. By focusing on entry-level data science, you'll build your practical Python skills in a way that mirrors real-world development. Finally, you'll discover the key steps in building and using simple machine learning algorithms.

By the end of this Python book, you'll have the knowledge, skills and confidence to creatively tackle your own ambitious projects with Python.

What you will learn

  • Write clean and well-commented code that is easy to maintain
  • Automate essential day-to-day tasks with Python scripts
  • Debug logical errors and handle exceptions in your programs
  • Explore data science fundamentals and create engaging visualizations
  • Get started with predictive machine learning
  • Keep your development process bug-free with automated testing

Who this book is for

This book is designed for anyone who is new to the Python programming language. Whether you're an aspiring software engineer or data scientist, or are just curious about learning how to code with Python, this book is for you. No prior programming experience is required.

Table of Contents

  1. Vital Python – Math, Strings, Conditionals, and Loops
  2. Python Structures
  3. Executing Python – Programs, Algorithms, and Functions
  4. Extending Python, Files, Errors, and Graphs
  5. Constructing Python – Classes and Methods
  6. The Standard Library
  7. Becoming Pythonic
  8. Software Development
  9. Practical Python – Advanced Topics
  10. Data Analytics with pandas and NumPy
  11. Machine Learning


فهرست مطالب

Cover
FM
Copyright
Table of Contents
Preface
Chapter 1: Vital Python – Math, Strings, Conditionals, and Loops
	Introduction
	Vital Python
	Numbers: Operations, Types, and Variables
		To Open a Jupyter Notebook
	Python as a Calculator
		Standard Math Operations
		Basic Math Operations
		Order of Operations
		Exercise 1: Getting to Know the Order of Operations
		Spacing in Python
		Number Types: Integers and Floats
		Exercise 2: Integer and Float Types
		Complex Number Types
		Errors in Python
		Variables
		Variable Assignment
		Exercise 3: Assigning Variables
		Changing Types
		Reassigning Variables in Terms of Themselves
		Activity 1: Assigning Values to Variables
		Variable Names
		Exercise 4: Variable Names
		Multiple Variables
		Exercise 5: Multiple Variables in Python
		Comments
		Exercise 6: Comments in Python
		Docstrings
		Activity 2: Finding a Solution Using the Pythagorean Theorem in Python
	Strings: Concatenation, Methods, and input()
		String Syntax
		Exercise 7: String Error Syntax
		Escape Sequences with Quotes
		Multi-Line Strings
		The print() Function
		Exercise 8: Displaying Strings
		String Operations and Concatenation
		Exercise 9: String Concatenation
	String Interpolation
		Comma Separators
		Format
		The len() Function
		String Methods
		Exercise 10: String Methods
		Casting
		Exercise 11: Types and Casting
		The input() Function
		Exercise 12: The input() Function
		Activity 3: Using the input() Function to Rate Your Day
	String Indexing and Slicing
		Indexing
	Slicing
		Strings and Their Methods
	Booleans and Conditionals
		Booleans
		Exercise 13: Boolean Variables
		Logical Operators
		Comparison Operators
		Exercise 14: Comparison Operators
		Comparing Strings
		Exercise 15: Comparing Strings
		Conditionals
		The if Syntax
		Indentation
		Exercise 16: Using the if Syntax
		if else
		Exercise 17: Using the if-else Syntax
		The elif Statement
	Loops
		The while Loops
		An Infinite Loop
		break
		Activity 4: Finding the Least Common Multiple (LCM)
		Programs
		Exercise 18: Calculating Perfect Squares
		Exercise 19: Real Estate Offer
		The for Loop
		Exercise 20: Using for Loops
		The continue Keyword
		Activity 5: Building Conversational Bots Using Python
	Summary
Chapter 2: Python Structures
	Introduction
	The Power of Lists
		Exercise 21: Working with Python Lists
		Matrices as Nested Lists
		Exercise 22: Using a Nested List to Store Data from a Matrix
		Activity 6: Using a Nested List to Store Employee Data
	Matrix Operations
		Exercise 23: Implementing Matrix Operations (Addition and Subtraction)
		Matrix Multiplication Operations
		Exercise 24: Implementing Matrix Operations (Multiplication)
	List Methods
		Exercise 25: Basic List Operations
		Accessing an Item from a List
		Exercise 26: Accessing an Item from Shopping List Data
		Adding an Item to a List
		Exercise 27: Adding Items to Our Shopping List
	Dictionary Keys and Values
		Exercise 28: Using a Dictionary to Store a Movie Record
		Activity 7: Storing Company Employee Table Data Using a List and a Dictionary
		Zipping and Unzipping Dictionaries Using zip()
		Exercise 29: Using the zip() Method to Manipulate Dictionaries
	Dictionary Methods
		Exercise 30: Accessing a Dictionary Using Dictionary Methods
	Tuples
		Exercise 31: Exploring Tuple Properties in Our Shopping List
	A Survey of Sets
		Exercise 32: Using Sets in Python
		Set Operations
		Exercise 33: Implementing Set Operations
	Choosing Types
	Summary
Chapter 3: Executing Python – Programs, Algorithms, and Functions
	Introduction
	Python Scripts and Modules
		Exercise 34: Writing and Executing Our First Script
		Exercise 35: Writing and Importing Our First Module
		Shebangs in Ubuntu
		Docstrings
		Exercise 36: Adding a Docstring to my_module.py
		Imports
		Exercise 37: Finding the System Date
		The if __name__ == "__main__" Statement
		Activity 8: What's the Time?
	Python Algorithms
		Exercise 38: The Maximum Number
		Time Complexity
		Time Complexity for the Maximum Number Algorithm
		Sorting Algorithms
		Exercise 39: Using Bubble Sort in Python
		Searching Algorithms
		Exercise 40: Linear Search in Python
		Exercise 41: Binary Search in Python
	Basic Functions
		Exercise 42: Defining and Calling the Function in Shell
		Exercise 43: Defining and Calling the Function in Python Script
		Exercise 44: Importing and Calling the Function from the Shell
		Positional Arguments
		Keyword Arguments
		Exercise 45: Defining the Function with Keyword Arguments
		Exercise 46: Defining the Function with Positional and Keyword Arguments
		Exercise 47: Using **kwargs
		Activity 9: Formatting Customer Names
	Iterative Functions
		Exercise 48: A Simple Function with a for Loop
		Exiting Early
		Exercise 49: Exiting the Function During the for Loop
		Activity 10: The Fibonacci Function with an Iteration
	Recursive Functions
		A Terminating Case
		Exercise 50: Recursive Countdown
		Exercise 51: Factorials with Iteration and Recursion
		Activity 11: The Fibonacci Function with Recursion
	Dynamic Programming
		Exercise 52: Summing Integers
		Timing Your Code
		Exercise 53: Timing Your Code
		Activity 12: The Fibonacci Function with Dynamic Programming
	Helper Functions
		Don't Repeat Yourself
		Exercise 54: Helper Currency Conversion
	Variable Scope
		Variables
		Defining inside versus outside a Function
		The Global Keyword
		The Nonlocal Keyword
	Lambda Functions
		Exercise 55: The First Item in a List
		Mapping with Lambda Functions
		Exercise 56: Mapping with a Logistic Transform
		Filtering with Lambda Functions
		Exercise 57: Using the Filter Lambda
		Sorting with Lambda Functions
	Summary
Chapter 4: Extending Python, Files, Errors, and Graphs
	Introduction
	Reading Files
		Exercise 58: Reading a Text File Using Python
		Exercise 59: Reading Partial Content from a Text File
	Writing Files
		Exercise 60: Creating and Writing Content to Files to Record the Date and Time in a Text File
	Preparing for Debugging (Defensive Code)
		Writing Assertions
		Exercise 61: Working with Incorrect Parameters to Find the Average Using Assert with Functions
	Plotting Techniques
		Exercise 62: Drawing a Scatter Plot to Study the Data between Ice Cream Sales versus Temperature
		Exercise 63: Drawing a Line Chart to Find the Growth in Stock Prices
		Exercise 64: Plotting Bar Plots to Grade Students
		Exercise 65: Creating a Pie Chart to Visualize the Number of Votes in a School
		Exercise 66: Generating a Heatmap to Visualize the Grades of Students
		Exercise 67: Generating a Density Plot to Visualize the Score of Students
		Exercise 68: Creating a Contour Plot
		Extending Graphs
		Exercise 69: Generating 3D plots to Plot a Sine Wave
	The Don'ts of Plotting Graphs
		Manipulating the Axis
		Cherry Picking Data
		Wrong Graph, Wrong Context
		Activity 13: Visualizing the Titanic Dataset Using a Pie Chart and Bar Plots
	Summary
Chapter 5: Constructing Python – Classes and Methods
	Introduction
	Classes and Objects
		Exercise 70: Exploring Strings
	Defining Classes
		Exercise 71: Creating a Pet Class
	The __init__ method
		Exercise 72: Creating a Circle Class
		Keyword Arguments
		Exercise 73: The Country Class with Keyword Arguments
	Methods
		Instance Methods
		Exercise 74: Adding an Instance Method to Our Pet Class
		Adding Arguments to Instance Methods
		Exercise 75: Computing the Size of Our Country
		The __str__ method
		Exercise 76: Adding an __str__ Method to the Country Class
		Static Methods
		Exercise 77: Refactoring Instance Methods Using a Static Method
		Class Methods
		Exercise 78: Extending Our Pet Class with Class Methods
	Properties
		The Property Decorator
		Exercise 79: The Full Name Property
		The Setter Method
		Exercise 80: Writing a Setter Method
		Validation via the Setter Method
	Inheritance
		The DRY Principle Revisited
		Single Inheritance
		Exercise 81: Inheriting from the Person Class
		Sub-Classing Classes from Python Packages
		Exercise 82: Sub-Classing the datetime.date Class
		Overriding Methods
		Calling the Parent Method with super()
		Exercise 83: Overriding Methods Using super()
		Multiple Inheritance
		Exercise 84: Creating a Consultation Appointment System
		Method Resolution Order
		Activity 14: Creating Classes and Inheriting from a Parent Class
	Summary
Chapter 6: The Standard Library
	Introduction
	The Importance of the Standard Library
		High-Level Modules
		Lower-Level Modules
		Knowing How to Navigate in the Standard Library
		Exercise 85: Using the dataclass Module
		Exercise 86: Extending the echo.py Example
	Dates and Times
		Exercise 87: Comparing datetime across Time Zones
		Exercise 88: Calculating the Time Delta between Two datetime Objects
		Exercise 89: Calculating the Unix Epoch Time
		Activity 15: Calculating the Time Elapsed to Run a Loop
	Interacting with the OS
		OS Information
		Exercise 90: Inspecting the Current Process Information
		Using pathlib
		Exercise 91: Using the glob Pattern to List Files within a Directory
		Listing All Hidden Files in Your Home Directory
	Using the subprocess Module
		Exercise 92: Customizing Child Processes with env vars
		Activity 16: Testing Python Code
	Logging
		Using Logging
		Logger Object
		Exercise 93: Using a logger Object
		Logging in warning, error, and fatal Categories
		Configuring the Logging Stack
		Exercise 94: Configuring the Logging Stack
	Collections
		Counters
		Exercise 95: Counting Words in a Text Document
		defaultdict
		Exercise 96: Refactoring Code with defaultdict
		ChainMap
	Functools
		Caching with functools.lru_cache
		Exercise 97: Using lru_cache to Speed Up Our Code
		Partial
		Exercise 98: Creating a print Function That Writes to stderr
		Activity 17: Using partial on class Methods
	Summary
Chapter 7: Becoming Pythonic
	Introduction
	Using List Comprehensions
		Exercise 99: Introducing List Comprehensions
		Exercise 100: Using Multiple Input Lists
		Activity 18: Building a Chess Tournament
	Set and Dictionary Comprehensions
		Exercise 101: Using Set Comprehensions
		Exercise 102: Using Dictionary Comprehensions
		Activity 19: Building a Scorecard Using Dictionary Comprehensions and Multiple Lists
	Default Dictionary
		Exercise 103: Adopting a Default Dict
	Iterators
		Exercise 104: The Simplest Iterator
		Exercise 105: A Custom Iterator
		Exercise 106: Controlling the Iteration
	Itertools
		Exercise 107: Using Infinite Sequences and takewhile
		Exercise 108: Turning a Finite Sequence into an Infinite One, and Back Again
	Generators
		Exercise 109: Generating a Sieve
		Activity 20: Using Random Numbers to Find the Value of Pi
	Regular Expressions
		Exercise 110: Matching Text with Regular Expressions
		Exercise 111: Using Regular Expressions to Replace Text
		Activity 21: Regular Expressions
	Summary
Chapter 8: Software Development
	Introduction
	Debugging
		Exercise 112: Debugging a Salary Calculator
		Activity 22: Debugging Sample Python Code for an Application
	Automated Testing
		Test Categorization
		Test Coverage
		Writing Tests in Python with Unit Testing
		Exercise 113: Checking Sample Code with Unit Testing
		Writing a Test with pytest
	Creating a PIP Package
		Exercise 114: Creating a Distribution That Includes Multiple Files within a Package
		Adding More Information to Your Package
	Creating Documentation the Easy Way
		Docstrings
		Using Sphinx
		Exercise 115: Documenting a Divisible Code File
		More Complex Documentation
	Source Management
		Repository
		Commit
		Staging Area
		Undoing Local Changes
		History
		Ignoring Files
		Exercise 116: Making a Change in CPython Using git
	Summary
Chapter 9: Practical Python – Advanced Topics
	Introduction
	Developing Collaboratively
		Exercise 117: Writing Python on GitHub as a Team
	Dependency Management
		Virtual Environments
		Exercise 118: Creating and Setting Up a conda Virtual Environment to Install numpy and pandas
		Saving and Sharing Virtual Environments
		Exercise 119: Sharing Environments between a conda Server and Your Local System
	Deploying Code into Production
		Exercise 120: Dockerizing Your Fizzbuzz Tool
	Multiprocessing
		Multiprocessing with execnet
		Exercise 121: Working with execnet to Execute a Simple Python Squaring Program
		Multiprocessing with the Multiprocessing Package
		Exercise 122: Using the Multiprocessing Package to Execute a Simple Python Program
		Multiprocessing with the Threading Package
		Exercise 123: Using the Threading Package
	Parsing Command-Line Arguments in Scripts
		Exercise 124: Introducing argparse to Accept Input from the User
		Positional Arguments
		Exercise 125: Using Positional Arguments to Accept Source and Destination Inputs from a User
	Performance and Profiling
		Changing Your Python
		PyPy
		Exercise 126: Using PyPy to Find the Time to Get a List of Prime Numbers
		Cython
		Exercise 127: Adopting Cython to Find the Time Taken to get a List of Prime Numbers
	Profiling
		Profiling with cProfile
		Activity 23: Generating a List of Random Numbers in a Python Virtual Environment
	Summary
Chapter 10: Data Analytics with pandas and NumPy
	Introduction
	NumPy and Basic Stats
		Exercise 128: Converting Lists to NumPy Arrays
		Exercise 129: Calculating the Mean of the Test Score
		Exercise 130: Finding the Median from a Collection of Income Data
		Skewed Data and Outliers
		Standard Deviation
		Exercise 131: Finding the Standard Deviation from Income Data
	Matrices
		Exercise 132: Matrices
		Computation Time for Large Matrices
		Exercise 133: Creating an Array to Implement NumPy Computations
	The pandas Library
		Exercise 134: Using DataFrames to Manipulate Stored Student testscore Data
		Exercise 135: DataFrame Computations with the Student testscore Data
		Exercise 136: Computing DataFrames within DataFrames
		New Rows and NaN
		Exercise 137: Concatenating and Finding the Mean with Null Values for Our testscore Data
		Cast Column Types
	Data
		Downloading Data
		Downloading the Boston Housing Data from GitHub
		Reading Data
		Exercise 138: Reading and Viewing the Boston Housing Dataset
		Exercise 139: Gaining Data Insights on the Boston Housing Dataset
	Null Values
		Exercise 140: Null Value Operations on the Dataset
		Replacing Null Values
	Visual Analysis
		The matplotlib Library
		Histograms
		Exercise 141: Creating a Histogram Using the Boston Housing Dataset
		Histogram Functions
		Scatter Plots
		Exercise 142: Creating a Scatter Plot for the Boston Housing Dataset
		Correlation
		Exercise 143: Correlation Values from the Dataset
		Regression
		Plotting a Regression Line
		StatsModel Regression Output
		Additional Models
		Exercise 144: Box Plots
		Violin Plots
		Activity 24: Data Analysis to Find the Outliers in Pay versus the Salary Report in the UK Statistics Dataset
	Summary
Chapter 11: Machine Learning
	Introduction
	Introduction to Linear Regression
		Simplify the Problem
		From One to N-Dimensions
		The Linear Regression Algorithm
		Exercise 145: Using Linear Regression to Predict the Accuracy of the Median Values of Our Dataset
		Linear Regression Function
	Cross-Validation
		Exercise 146: Using the cross_val_score Function to Get Accurate Results on the Dataset
	Regularization: Ridge and Lasso
	K-Nearest Neighbors, Decision Trees, and Random Forests
		K-Nearest Neighbors
		Exercise 147: Using K-Nearest Neighbors to Find the Median Value of the Dataset
		Exercise 148: K-Nearest Neighbors with GridSearchCV to Find the Optimal Number of Neighbors
		Decision Trees and Random Forests
		Exercise 149: Decision Trees and Random Forests
		Random Forest Hyperparameters
		Exercise 150: Random Forest Tuned to Improve the Prediction on Our Dataset
	Classification Models
		Exercise 151: Preparing the Pulsar Dataset and Checking for Null Values
		Logistic Regression
		Exercise 152: Using Logistic Regression to Predict Data Accuracy
		Other Classifiers
		Naive Bayes
		Exercise 153: Using GaussianNB, KneighborsClassifier, DecisionTreeClassifier, and RandomForestClassifier to Predict Accuracy in Our Dataset
		Confusion Matrix
		Exercise 154: Finding the Pulsar Percentage from the Dataset
		Exercise 155: Confusion Matrix and Classification Report for the Pulsar Dataset
	Boosting Methods
		Exercise 156: Using AdaBoost to Predict the Best Optimal Values
		Activity 25: Using Machine Learning to Predict Customer Return Rate Accuracy
	Summary
Appendix
Index




نظرات کاربران