دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Andrew Bird, Dr Lau Cher Han, Mario Corchero Jimenez, Graham Lee, Corey Wade سری: ISBN (شابک) : 1839218851, 9781839218859 ناشر: Packt Publishing سال نشر: 2019 تعداد صفحات: 607 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب The Python Workshop: Learn to code in Python and kickstart your career in software development or data science به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کارگاه آموزشی پایتون: کدنویسی در پایتون را بیاموزید و حرفه خود را در زمینه تولید نرم افزار یا علم داده شروع کنید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مبانی کدنویسی پاک و مؤثر پایتون را بیاموزید و مهارتهای عملی برای مقابله با پروژههای توسعه نرمافزار یا علم داده خود را ایجاد کنید
آیا همیشه میخواستید پایتون را یاد بگیرید، اما هرگز کاملاً نمیدانستید چگونه شروع کنید؟
برنامههای کاربردی بیشتر از ما هستند. متوجه شوید که با استفاده از پایتون توسعه می یابند زیرا یادگیری، خواندن و نوشتن آن آسان است. اکنون می توانید با کمک این آموزش تعاملی، یادگیری زبان را به سرعت و به طور موثر شروع کنید.
کارگاه پایتون با نشان دادن نحوه صحیح اعمال نحو Python برای نوشتن برنامه های ساده و نحوه استفاده از ساختارهای Python مناسب شروع می شود. برای ذخیره و بازیابی داده ها خواهید دید که چگونه فایلها را مدیریت کنید، با خطاها برخورد کنید، و از کلاسها و روشها برای نوشتن کد مختصر، قابل استفاده مجدد و کارآمد استفاده کنید.
با پیشروی، نحوه استفاده از کتابخانه استاندارد را خواهید فهمید. کد اشکال زدایی برای عیب یابی مشکلات، و نوشتن تست های واحد برای اعتبارسنجی رفتار برنامه.
در مورد استفاده از کتابخانه های پانداها و NumPy برای تجزیه و تحلیل داده ها، و کتابخانه های گرافیکی Matplotlib و Seaborn برای ایجاد داده های تاثیرگذار، بینش هایی به دست خواهید آورد. تجسم ها با تمرکز بر علم داده سطح ابتدایی، مهارت های پایتون عملی خود را به گونه ای ایجاد خواهید کرد که منعکس کننده توسعه دنیای واقعی باشد. در نهایت، مراحل کلیدی ساخت و استفاده از الگوریتمهای یادگیری ماشینی ساده را کشف خواهید کرد.
در پایان این کتاب پایتون، دانش، مهارتها و اعتماد به نفس لازم برای مقابله خلاقانه با پروژههای جاهطلبانه خود را خواهید داشت. با پایتون.
این کتاب برای هرکسی طراحی شده است که تازه وارد پایتون شده است. زبان برنامه نویسی. چه یک مهندس نرم افزار مشتاق یا دانشمند داده باشید، یا فقط در مورد یادگیری نحوه کدنویسی با پایتون کنجکاو باشید، این کتاب برای شما مناسب است. هیچ تجربه قبلی در برنامه نویسی مورد نیاز نیست.
Learn the fundamentals of clean, effective Python coding and build the practical skills to tackle your own software development or data science projects
Have you always wanted to learn Python, but never quite known how to start?
More applications than we realize are being developed using Python because it is easy to learn, read, and write. You can now start learning the language quickly and effectively with the help of this interactive tutorial.
The Python Workshop starts by showing you how to correctly apply Python syntax to write simple programs, and how to use appropriate Python structures to store and retrieve data. You'll see how to handle files, deal with errors, and use classes and methods to write concise, reusable, and efficient code.
As you advance, you'll understand how to use the standard library, debug code to troubleshoot problems, and write unit tests to validate application behavior.
You'll gain insights into using the pandas and NumPy libraries for analyzing data, and the graphical libraries of Matplotlib and Seaborn to create impactful data visualizations. By focusing on entry-level data science, you'll build your practical Python skills in a way that mirrors real-world development. Finally, you'll discover the key steps in building and using simple machine learning algorithms.
By the end of this Python book, you'll have the knowledge, skills and confidence to creatively tackle your own ambitious projects with Python.
This book is designed for anyone who is new to the Python programming language. Whether you're an aspiring software engineer or data scientist, or are just curious about learning how to code with Python, this book is for you. No prior programming experience is required.
Cover FM Copyright Table of Contents Preface Chapter 1: Vital Python – Math, Strings, Conditionals, and Loops Introduction Vital Python Numbers: Operations, Types, and Variables To Open a Jupyter Notebook Python as a Calculator Standard Math Operations Basic Math Operations Order of Operations Exercise 1: Getting to Know the Order of Operations Spacing in Python Number Types: Integers and Floats Exercise 2: Integer and Float Types Complex Number Types Errors in Python Variables Variable Assignment Exercise 3: Assigning Variables Changing Types Reassigning Variables in Terms of Themselves Activity 1: Assigning Values to Variables Variable Names Exercise 4: Variable Names Multiple Variables Exercise 5: Multiple Variables in Python Comments Exercise 6: Comments in Python Docstrings Activity 2: Finding a Solution Using the Pythagorean Theorem in Python Strings: Concatenation, Methods, and input() String Syntax Exercise 7: String Error Syntax Escape Sequences with Quotes Multi-Line Strings The print() Function Exercise 8: Displaying Strings String Operations and Concatenation Exercise 9: String Concatenation String Interpolation Comma Separators Format The len() Function String Methods Exercise 10: String Methods Casting Exercise 11: Types and Casting The input() Function Exercise 12: The input() Function Activity 3: Using the input() Function to Rate Your Day String Indexing and Slicing Indexing Slicing Strings and Their Methods Booleans and Conditionals Booleans Exercise 13: Boolean Variables Logical Operators Comparison Operators Exercise 14: Comparison Operators Comparing Strings Exercise 15: Comparing Strings Conditionals The if Syntax Indentation Exercise 16: Using the if Syntax if else Exercise 17: Using the if-else Syntax The elif Statement Loops The while Loops An Infinite Loop break Activity 4: Finding the Least Common Multiple (LCM) Programs Exercise 18: Calculating Perfect Squares Exercise 19: Real Estate Offer The for Loop Exercise 20: Using for Loops The continue Keyword Activity 5: Building Conversational Bots Using Python Summary Chapter 2: Python Structures Introduction The Power of Lists Exercise 21: Working with Python Lists Matrices as Nested Lists Exercise 22: Using a Nested List to Store Data from a Matrix Activity 6: Using a Nested List to Store Employee Data Matrix Operations Exercise 23: Implementing Matrix Operations (Addition and Subtraction) Matrix Multiplication Operations Exercise 24: Implementing Matrix Operations (Multiplication) List Methods Exercise 25: Basic List Operations Accessing an Item from a List Exercise 26: Accessing an Item from Shopping List Data Adding an Item to a List Exercise 27: Adding Items to Our Shopping List Dictionary Keys and Values Exercise 28: Using a Dictionary to Store a Movie Record Activity 7: Storing Company Employee Table Data Using a List and a Dictionary Zipping and Unzipping Dictionaries Using zip() Exercise 29: Using the zip() Method to Manipulate Dictionaries Dictionary Methods Exercise 30: Accessing a Dictionary Using Dictionary Methods Tuples Exercise 31: Exploring Tuple Properties in Our Shopping List A Survey of Sets Exercise 32: Using Sets in Python Set Operations Exercise 33: Implementing Set Operations Choosing Types Summary Chapter 3: Executing Python – Programs, Algorithms, and Functions Introduction Python Scripts and Modules Exercise 34: Writing and Executing Our First Script Exercise 35: Writing and Importing Our First Module Shebangs in Ubuntu Docstrings Exercise 36: Adding a Docstring to my_module.py Imports Exercise 37: Finding the System Date The if __name__ == "__main__" Statement Activity 8: What's the Time? Python Algorithms Exercise 38: The Maximum Number Time Complexity Time Complexity for the Maximum Number Algorithm Sorting Algorithms Exercise 39: Using Bubble Sort in Python Searching Algorithms Exercise 40: Linear Search in Python Exercise 41: Binary Search in Python Basic Functions Exercise 42: Defining and Calling the Function in Shell Exercise 43: Defining and Calling the Function in Python Script Exercise 44: Importing and Calling the Function from the Shell Positional Arguments Keyword Arguments Exercise 45: Defining the Function with Keyword Arguments Exercise 46: Defining the Function with Positional and Keyword Arguments Exercise 47: Using **kwargs Activity 9: Formatting Customer Names Iterative Functions Exercise 48: A Simple Function with a for Loop Exiting Early Exercise 49: Exiting the Function During the for Loop Activity 10: The Fibonacci Function with an Iteration Recursive Functions A Terminating Case Exercise 50: Recursive Countdown Exercise 51: Factorials with Iteration and Recursion Activity 11: The Fibonacci Function with Recursion Dynamic Programming Exercise 52: Summing Integers Timing Your Code Exercise 53: Timing Your Code Activity 12: The Fibonacci Function with Dynamic Programming Helper Functions Don't Repeat Yourself Exercise 54: Helper Currency Conversion Variable Scope Variables Defining inside versus outside a Function The Global Keyword The Nonlocal Keyword Lambda Functions Exercise 55: The First Item in a List Mapping with Lambda Functions Exercise 56: Mapping with a Logistic Transform Filtering with Lambda Functions Exercise 57: Using the Filter Lambda Sorting with Lambda Functions Summary Chapter 4: Extending Python, Files, Errors, and Graphs Introduction Reading Files Exercise 58: Reading a Text File Using Python Exercise 59: Reading Partial Content from a Text File Writing Files Exercise 60: Creating and Writing Content to Files to Record the Date and Time in a Text File Preparing for Debugging (Defensive Code) Writing Assertions Exercise 61: Working with Incorrect Parameters to Find the Average Using Assert with Functions Plotting Techniques Exercise 62: Drawing a Scatter Plot to Study the Data between Ice Cream Sales versus Temperature Exercise 63: Drawing a Line Chart to Find the Growth in Stock Prices Exercise 64: Plotting Bar Plots to Grade Students Exercise 65: Creating a Pie Chart to Visualize the Number of Votes in a School Exercise 66: Generating a Heatmap to Visualize the Grades of Students Exercise 67: Generating a Density Plot to Visualize the Score of Students Exercise 68: Creating a Contour Plot Extending Graphs Exercise 69: Generating 3D plots to Plot a Sine Wave The Don'ts of Plotting Graphs Manipulating the Axis Cherry Picking Data Wrong Graph, Wrong Context Activity 13: Visualizing the Titanic Dataset Using a Pie Chart and Bar Plots Summary Chapter 5: Constructing Python – Classes and Methods Introduction Classes and Objects Exercise 70: Exploring Strings Defining Classes Exercise 71: Creating a Pet Class The __init__ method Exercise 72: Creating a Circle Class Keyword Arguments Exercise 73: The Country Class with Keyword Arguments Methods Instance Methods Exercise 74: Adding an Instance Method to Our Pet Class Adding Arguments to Instance Methods Exercise 75: Computing the Size of Our Country The __str__ method Exercise 76: Adding an __str__ Method to the Country Class Static Methods Exercise 77: Refactoring Instance Methods Using a Static Method Class Methods Exercise 78: Extending Our Pet Class with Class Methods Properties The Property Decorator Exercise 79: The Full Name Property The Setter Method Exercise 80: Writing a Setter Method Validation via the Setter Method Inheritance The DRY Principle Revisited Single Inheritance Exercise 81: Inheriting from the Person Class Sub-Classing Classes from Python Packages Exercise 82: Sub-Classing the datetime.date Class Overriding Methods Calling the Parent Method with super() Exercise 83: Overriding Methods Using super() Multiple Inheritance Exercise 84: Creating a Consultation Appointment System Method Resolution Order Activity 14: Creating Classes and Inheriting from a Parent Class Summary Chapter 6: The Standard Library Introduction The Importance of the Standard Library High-Level Modules Lower-Level Modules Knowing How to Navigate in the Standard Library Exercise 85: Using the dataclass Module Exercise 86: Extending the echo.py Example Dates and Times Exercise 87: Comparing datetime across Time Zones Exercise 88: Calculating the Time Delta between Two datetime Objects Exercise 89: Calculating the Unix Epoch Time Activity 15: Calculating the Time Elapsed to Run a Loop Interacting with the OS OS Information Exercise 90: Inspecting the Current Process Information Using pathlib Exercise 91: Using the glob Pattern to List Files within a Directory Listing All Hidden Files in Your Home Directory Using the subprocess Module Exercise 92: Customizing Child Processes with env vars Activity 16: Testing Python Code Logging Using Logging Logger Object Exercise 93: Using a logger Object Logging in warning, error, and fatal Categories Configuring the Logging Stack Exercise 94: Configuring the Logging Stack Collections Counters Exercise 95: Counting Words in a Text Document defaultdict Exercise 96: Refactoring Code with defaultdict ChainMap Functools Caching with functools.lru_cache Exercise 97: Using lru_cache to Speed Up Our Code Partial Exercise 98: Creating a print Function That Writes to stderr Activity 17: Using partial on class Methods Summary Chapter 7: Becoming Pythonic Introduction Using List Comprehensions Exercise 99: Introducing List Comprehensions Exercise 100: Using Multiple Input Lists Activity 18: Building a Chess Tournament Set and Dictionary Comprehensions Exercise 101: Using Set Comprehensions Exercise 102: Using Dictionary Comprehensions Activity 19: Building a Scorecard Using Dictionary Comprehensions and Multiple Lists Default Dictionary Exercise 103: Adopting a Default Dict Iterators Exercise 104: The Simplest Iterator Exercise 105: A Custom Iterator Exercise 106: Controlling the Iteration Itertools Exercise 107: Using Infinite Sequences and takewhile Exercise 108: Turning a Finite Sequence into an Infinite One, and Back Again Generators Exercise 109: Generating a Sieve Activity 20: Using Random Numbers to Find the Value of Pi Regular Expressions Exercise 110: Matching Text with Regular Expressions Exercise 111: Using Regular Expressions to Replace Text Activity 21: Regular Expressions Summary Chapter 8: Software Development Introduction Debugging Exercise 112: Debugging a Salary Calculator Activity 22: Debugging Sample Python Code for an Application Automated Testing Test Categorization Test Coverage Writing Tests in Python with Unit Testing Exercise 113: Checking Sample Code with Unit Testing Writing a Test with pytest Creating a PIP Package Exercise 114: Creating a Distribution That Includes Multiple Files within a Package Adding More Information to Your Package Creating Documentation the Easy Way Docstrings Using Sphinx Exercise 115: Documenting a Divisible Code File More Complex Documentation Source Management Repository Commit Staging Area Undoing Local Changes History Ignoring Files Exercise 116: Making a Change in CPython Using git Summary Chapter 9: Practical Python – Advanced Topics Introduction Developing Collaboratively Exercise 117: Writing Python on GitHub as a Team Dependency Management Virtual Environments Exercise 118: Creating and Setting Up a conda Virtual Environment to Install numpy and pandas Saving and Sharing Virtual Environments Exercise 119: Sharing Environments between a conda Server and Your Local System Deploying Code into Production Exercise 120: Dockerizing Your Fizzbuzz Tool Multiprocessing Multiprocessing with execnet Exercise 121: Working with execnet to Execute a Simple Python Squaring Program Multiprocessing with the Multiprocessing Package Exercise 122: Using the Multiprocessing Package to Execute a Simple Python Program Multiprocessing with the Threading Package Exercise 123: Using the Threading Package Parsing Command-Line Arguments in Scripts Exercise 124: Introducing argparse to Accept Input from the User Positional Arguments Exercise 125: Using Positional Arguments to Accept Source and Destination Inputs from a User Performance and Profiling Changing Your Python PyPy Exercise 126: Using PyPy to Find the Time to Get a List of Prime Numbers Cython Exercise 127: Adopting Cython to Find the Time Taken to get a List of Prime Numbers Profiling Profiling with cProfile Activity 23: Generating a List of Random Numbers in a Python Virtual Environment Summary Chapter 10: Data Analytics with pandas and NumPy Introduction NumPy and Basic Stats Exercise 128: Converting Lists to NumPy Arrays Exercise 129: Calculating the Mean of the Test Score Exercise 130: Finding the Median from a Collection of Income Data Skewed Data and Outliers Standard Deviation Exercise 131: Finding the Standard Deviation from Income Data Matrices Exercise 132: Matrices Computation Time for Large Matrices Exercise 133: Creating an Array to Implement NumPy Computations The pandas Library Exercise 134: Using DataFrames to Manipulate Stored Student testscore Data Exercise 135: DataFrame Computations with the Student testscore Data Exercise 136: Computing DataFrames within DataFrames New Rows and NaN Exercise 137: Concatenating and Finding the Mean with Null Values for Our testscore Data Cast Column Types Data Downloading Data Downloading the Boston Housing Data from GitHub Reading Data Exercise 138: Reading and Viewing the Boston Housing Dataset Exercise 139: Gaining Data Insights on the Boston Housing Dataset Null Values Exercise 140: Null Value Operations on the Dataset Replacing Null Values Visual Analysis The matplotlib Library Histograms Exercise 141: Creating a Histogram Using the Boston Housing Dataset Histogram Functions Scatter Plots Exercise 142: Creating a Scatter Plot for the Boston Housing Dataset Correlation Exercise 143: Correlation Values from the Dataset Regression Plotting a Regression Line StatsModel Regression Output Additional Models Exercise 144: Box Plots Violin Plots Activity 24: Data Analysis to Find the Outliers in Pay versus the Salary Report in the UK Statistics Dataset Summary Chapter 11: Machine Learning Introduction Introduction to Linear Regression Simplify the Problem From One to N-Dimensions The Linear Regression Algorithm Exercise 145: Using Linear Regression to Predict the Accuracy of the Median Values of Our Dataset Linear Regression Function Cross-Validation Exercise 146: Using the cross_val_score Function to Get Accurate Results on the Dataset Regularization: Ridge and Lasso K-Nearest Neighbors, Decision Trees, and Random Forests K-Nearest Neighbors Exercise 147: Using K-Nearest Neighbors to Find the Median Value of the Dataset Exercise 148: K-Nearest Neighbors with GridSearchCV to Find the Optimal Number of Neighbors Decision Trees and Random Forests Exercise 149: Decision Trees and Random Forests Random Forest Hyperparameters Exercise 150: Random Forest Tuned to Improve the Prediction on Our Dataset Classification Models Exercise 151: Preparing the Pulsar Dataset and Checking for Null Values Logistic Regression Exercise 152: Using Logistic Regression to Predict Data Accuracy Other Classifiers Naive Bayes Exercise 153: Using GaussianNB, KneighborsClassifier, DecisionTreeClassifier, and RandomForestClassifier to Predict Accuracy in Our Dataset Confusion Matrix Exercise 154: Finding the Pulsar Percentage from the Dataset Exercise 155: Confusion Matrix and Classification Report for the Pulsar Dataset Boosting Methods Exercise 156: Using AdaBoost to Predict the Best Optimal Values Activity 25: Using Machine Learning to Predict Customer Return Rate Accuracy Summary Appendix Index