دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Guohua Chen
سری:
ISBN (شابک) : 9812771948
ناشر: World Scientific Pub Co Inc
سال نشر: 2007
تعداد صفحات: 738
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 19 مگابایت
در صورت تبدیل فایل کتاب The Proceedings of the 5th Asia-Pacific Drying Conference: Hong Kong 13-15 August 2007 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مجموعه مقالات پنجمین کنفرانس خشک کردن آسیا و اقیانوسیه: هنگ کنگ 13-15 آگوست 2007 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این جلد شامل مقالات ارائه شده در پنجمین کنفرانس خشک کردن آسیا و اقیانوسیه، که در 13 تا 15 اوت 2007 چین برگزار شد، می باشد. مقالات جدیدترین پیشرفت تحقیق و توسعه خشک کردن در منطقه آسیا و اقیانوسیه را نشان می دهد. این مجموعه برای دانشجویان تحصیلات تکمیلی، محققان و متخصصان در زمینه تحقیق و توسعه خشک کردن مفید است.
This volume consists of the papers presented at the 5th Asia-Pacific Drying Conference, held 13-15 August, 2007 China. The articles feature the most recent progress of drying R&D in the Asia-Pacific region. The proceedings is useful for graduate students, researchers and professionals in the field of drying research and development.
Contents......Page 10
Volume 2......Page 19
2.1 Characteristics of Raw Coal Samples......Page 32
3.2 Re-absorption by Dried Coal samples......Page 33
3.3 Effect of Particle Size on Drying Characteristics......Page 34
3.4 Drop Test......Page 35
4. Conclusions......Page 36
References......Page 37
1. Introduction......Page 38
2.2 Technological processes......Page 39
3.2 Operating principle......Page 40
4.1 The design basis......Page 41
4.2.3 The calculations of hour’s medium flow......Page 42
4.2.5 The calculation of coal consumption......Page 43
5. Performance testing and experiment......Page 44
5. Conclusion......Page 45
References......Page 46
1. Introduction......Page 47
2.2.2. Determination of drying rate curves......Page 48
4. Conclusions......Page 50
References......Page 51
1. Introduction......Page 53
2. Materials and Methods......Page 54
3. Results and Discussions......Page 55
Conclusion......Page 58
References......Page 59
1. Introduction......Page 60
2.3. Experimental Materials......Page 61
3.1. Temperature Change Characteristics of the Large-leaved CNH.M......Page 62
3.2. Drying Characteristics of the CNH.M......Page 63
References......Page 65
1. Introduction......Page 66
2.3. Preparation of Water Extract of Astragalus......Page 67
2.7. Test of the Content of APS (astragalus polysaccharide) in Samples......Page 68
3. Results and Discussion......Page 69
References......Page 71
1. Guidelines......Page 72
2.1. Materials and Apparatus......Page 73
3. Results and Discussion......Page 74
4. Conclusion......Page 76
References......Page 77
Introduction......Page 78
Heat Storage Unit......Page 79
Drying Unit......Page 80
Experimental Procedure......Page 81
Collector Performance......Page 82
Dryer Performance......Page 83
References......Page 85
1. Introduction......Page 87
2.1. Preparation of sapodilla samples and dehydration processes......Page 88
3.2. Microwave treatment......Page 89
References......Page 91
1. Introduction......Page 93
2.1 Food Security......Page 94
2.2 Drying......Page 95
3. R&D Developments in South India......Page 96
References......Page 99
1. Introduction......Page 101
2. Materials and methods......Page 102
3.1. Time and concentration of osmotic pretreatment......Page 103
3.3. Microwave assisted hot air drying......Page 104
3.5. Effect of drying method on surface color......Page 105
References......Page 106
1. INTRODUCTION......Page 107
2. EXPERIMENTAL RIG AND METHOD......Page 108
3.1 Heat Transfer Coefficient at Different Position......Page 111
3.3 Influence of Filling Ratio......Page 112
REFERENCES......Page 113
1. INTRODUCTION......Page 114
2. EXPERIMENTAL RIG......Page 115
3. RESULTS AND DISCUSSION......Page 117
REFERENCES......Page 120
1. Introduction......Page 121
2. Mathematical Relations......Page 122
4. Conclusions......Page 124
References......Page 125
1. Introduction......Page 127
2. Mathematical Modeling......Page 128
3. CFD Modelling and Simulations......Page 129
4. Experimental Validation......Page 131
References......Page 132
1. Introduction......Page 133
2.2 Drying equipment and procedure......Page 134
3.1 Drying curves......Page 135
4 Conclusions......Page 137
References......Page 138
Low-Cost Solar Thermodynamic Drying System for the Dehydration of Roselle J. M. Jimenez, J. J. R. Ruiz and I. A. Gonzalez......Page 139
1.1. The Dehydration Process......Page 140
1.3. Batch versus Continuous Process Drying......Page 141
2.1. Characterization of a Theoretical Drying Process......Page 142
3. Design, Analysis, and Proposal of Solar Drying System......Page 143
3.1. Stage One – Establish Control Variables......Page 144
3.2. Stage Two – Design and Construct Prototype......Page 145
3.3. Stage Three – Analyze Prototype Results......Page 146
3.5. Description of Proposed Solar Drying System......Page 147
4. Conclusion......Page 148
Literature......Page 149
1. Introduction......Page 150
3.1.2 Effect of material thickness on vitamin C content......Page 151
3.1.3 Effect of drying pressure on vitamin C content......Page 152
3.2.3 Analyses of effect experimental parameters on Vitamin C......Page 153
References......Page 155
1. Introduction......Page 156
2.2 Freezing Process......Page 157
2.4 Chemical Reactions......Page 158
3. Detection Results......Page 159
3.2 Particle Size, Shape and Crystal Structure......Page 160
4.2 Mechanism of Particle Forming and Growing Up......Page 162
References......Page 163
1. Introduction......Page 164
2.1.1. Mass transfer equations......Page 165
2.1.3. Sublimation interface tracking scheme......Page 166
2.2. Model equations for the secondary drying stage......Page 167
4.1. Position of the moving interface during the primary drying stage......Page 168
4.2. Distributions of temperature in the product and water vapor in the dried layer during the primary drying stage......Page 169
5. Conclusions......Page 170
References......Page 171
Improving Nutritional Value of Dried Blueberries (VACCINIUM CORYMBOSUM L.) Combining Microwave-Vacuum, Hot-Air Drying and Freeze Drying Technologies E. I. Mejia-Meza, J. A. Yanez, C. M. Remsberg, N. M. Davies, B. Rasco, F. Younce and C. Clary......Page 173
3.1 Drying Methods......Page 174
3.1. Polyphenol Retention......Page 175
3.3. Total Antioxidant Activity......Page 176
4. Discussion......Page 177
References......Page 178
Fundamental CFD Diffusion Model for Surface Sublimation Process of Chitosan Membrane Atmospheric Freeze-Drying Sheng Li, I. Zbicinski, Hongyao Wang and J. Stawczyk......Page 180
1. Introduction......Page 181
2.1. Film sublimation basics: the basic phase change......Page 182
3.1. Geometry of computational domain and boundary conditions......Page 183
3.2. Validation of CFD model......Page 184
References......Page 185
Diffusion Model for Apple Cubes Atmospheric Freeze-Drying with the Effect of Shrinkage Sheng Li, I. Zbicinski, Hongyao Wang, J. Stawczyk and Zongyu Zhang......Page 187
1. Introduction......Page 188
2.2. Determination of De in AFD with the effect of shrinkage......Page 189
3.1. Drying kinetics for constant and ascending process temperature......Page 190
References......Page 192
1. Introduction......Page 193
2.3. Freezing apparatus and freeze-drying process......Page 194
3.1. Ice dendrite Size Analysis depending on the kind of cryoprotectants......Page 195
3.4. Relationship between ice dendrite size and survival rate of Saccharomyces cerevisiae......Page 196
References......Page 197
1. Introduction......Page 199
2.2. Liposomes preparations......Page 200
3.1. Size of liposomes coated with PCL and EE100......Page 201
3.3. Size of freeze-thawed or freeze-dried liposomes with cryoprotectant......Page 202
References......Page 204
1. Introduction......Page 206
2.2. Freezing and freeze-drying......Page 207
3. Results and Discussion......Page 208
References......Page 214
Analysis of Lemon Juice Freeze Drying Process E. A. Boss, G. M. F. Pinto and R. M. Filho......Page 215
1. Introduction......Page 216
2. Material and Method......Page 217
3. Result and Dicussion......Page 218
4. Conclusion......Page 220
References......Page 221
1. Introduction......Page 222
2.1. Sample preparation......Page 223
3.1. Morphology formed by freezing of silica hydrogels......Page 224
3.2. Morphology formed by freezing of silica hydrosols......Page 225
References......Page 227
1. Introduction......Page 228
2.2. Microwave freeze dryer......Page 229
3.1. Drying curves......Page 231
4. Conclusions......Page 232
References......Page 233
1. Introduction......Page 234
3. Model Calculation......Page 235
4.1. Estimation of mean ice crystal sizes......Page 237
4.2. Permeability during freeze-drying......Page 238
References......Page 239
1. Introduction......Page 240
2.1. Sol-gel preparation......Page 241
3.1. Silica gel appearance......Page 242
3.3. Structure of PVA-doped silica gels by SEM......Page 243
4. Conclusions......Page 244
References......Page 245
1. Introduction......Page 246
2.2. Experimental method......Page 247
2. Results and discussion......Page 248
References......Page 251
1. Introduction......Page 252
2. First Principle Model and Control Problem Formulation......Page 253
3. Process Control Strategy......Page 254
4. Control Software: Main Features of MPC@CB......Page 255
References......Page 256
1 Introduction......Page 258
3.1 Drying rate with different temperature drying......Page 259
3.3 Dimension and Shape Changes......Page 260
3.3.2 The deformation of cross-section in drying process......Page 262
References......Page 263
Cross-Grain Coefficient of Thermal Conductivity for Wood Particle Yongqun Xie and Biguang Zhang......Page 265
References......Page 271
1. Introduction......Page 273
2. Materials and Methods......Page 274
3.1. Changes in Color of Fibers......Page 275
3.3. Changes in Microstructure of Fibers......Page 276
Acknowledgements......Page 277
References......Page 278
2.1. Materials......Page 279
2.6. Surface roughness measurement......Page 280
3. Results and discussion......Page 282
References......Page 284
2. Theory......Page 285
3. Developing the design matrix......Page 288
4. Development of a mathematical model......Page 289
References......Page 290
1. Introduction......Page 292
2. Experimental Apparatus and Procedure......Page 293
3.1. Equilibrium moisture content of wood powder......Page 294
3.3. Simultaneous drying and grinding in continuous mill......Page 295
References......Page 297
1. Introduction......Page 299
2.1. Description of the rotary dryer and drying process......Page 300
2.2. Energy and Mass Balances......Page 301
2.3. Drying Rate Curves......Page 302
2.4. Residence Time......Page 303
3. Simulation Results and Discussion......Page 304
References......Page 307
1. Introduction......Page 308
2.2. Experiment Equipment......Page 309
2.3. Experimental Conditions......Page 310
3.1. The Variations of the Inner Temperature with Microwave Power......Page 311
3.2. The Variations of the Inner Steam Pressure with Microwave Power......Page 312
References......Page 313
1. Introduction......Page 315
2.1. Fluidized bed drying......Page 316
2.2. Spouted bed drying......Page 319
Acknowledgement......Page 321
References......Page 322
1. Introduction......Page 323
1.1. Principles and Mechanism of Drying......Page 324
2. Description of Advanced Microwave Technology......Page 325
3. Results and Discussion......Page 326
3.2. Advantages of the New Microwave Drying Technology......Page 327
References......Page 328
1. Theoretical background......Page 330
2. Visualization model for analysis of microwave cavity......Page 331
3. Results and discussions......Page 332
Acknowledgement......Page 334
References......Page 335
1. Introduction......Page 336
2. Experimental......Page 337
3.2. Contact heat transfer coefficient......Page 338
4.1. Paper temperature simulation......Page 339
4.2. Dryer section simulation......Page 340
5. Conclusions......Page 341
References......Page 342
1. Introduction......Page 343
2.3. Fourier Transform......Page 345
3. Results and Discussion......Page 346
References......Page 348
1. Introduction......Page 349
3.1. Blanching......Page 350
3.2. Drying......Page 351
3.3. Second-drying......Page 352
References......Page 353
1. Introduction......Page 354
2. Total Project Design......Page 355
3.1. Design of the electric heater......Page 356
3.3. Design of the tunnel unit......Page 357
4. Drying Tests of Chinese Medicine Material......Page 358
References......Page 359
1. Introduction......Page 360
2.2. Osmotic Dehydration......Page 361
3. Results and Discussion......Page 362
References......Page 366
1. Introduction......Page 368
2.3. SPEM Equipment......Page 369
3. Results and Discussion......Page 370
References......Page 373
1. Introduction......Page 374
2.6 Cut Test......Page 375
3.1 Survey......Page 376
3.3 Cut Test and Fermentation Index......Page 377
3.4 Sensory Evaluation of Cocoa Liquor......Page 378
References......Page 379
1. Introduction......Page 380
2.3 Film drying......Page 381
3.1 Drying kinetics of chitosan films......Page 382
3.2 Physical properties of films......Page 384
References......Page 386
1. Introduction......Page 388
2.3. β-Carotene analysis......Page 389
3. Results and Discussion......Page 390
References......Page 392
Effects of Drying Methods and Tea Preparation Temperature on the Degradation of Antioxidants in Indian Gooseberry Tea Chaiwate Rimkate, Pin-Der Duh, Sakamon Devahastin and Naphaporn Chiewchan......Page 394
2.1. Preparation of dried Indian gooseberry flake......Page 395
2.4. Measurement of Total Antioxidant Activity......Page 396
3.1 Drying kinetics of Indian gooseberry flake......Page 397
3.2. Antioxidant Activity of Dried Indian Gooseberry Flake......Page 399
4. Conclusions......Page 400
References......Page 402
1. Introduction......Page 404
2.1. Materials......Page 405
3.1. Moisture sorption isotherm......Page 406
3.3. Heat of sorption......Page 408
Acknowledgements......Page 409
References......Page 410
1. Introduction......Page 411
2.3. Measurement of Protein content......Page 412
3.3. Spray drying......Page 413
4.2. Freeze drying......Page 414
4.3. Spray drying......Page 415
References......Page 416
1. Introduction......Page 417
2.1. Preparation of Samples......Page 418
2.3. Texture Measurement......Page 419
3. Results and Discussion......Page 420
References......Page 425
1. Introduction......Page 427
3. Experimental procedure......Page 428
5.1. Drying kinetics......Page 429
5.2. Quality analysis......Page 430
References......Page 432
2.1. First stage of drying: heat and liquid water mass transfer......Page 433
3. Intensification of the Drying Process......Page 434
3.2. Second intensification: remedy the paradox......Page 435
3.3.4. Drying techniques......Page 436
3.3.6. Results and discussion......Page 437
References......Page 438
1. Introduction......Page 439
2.2. Water sorption isotherms......Page 440
2.6. Statistical analysis......Page 441
3.2. Glass transition temperature......Page 442
3.3. Effects of the storage condition on the moisture content, water activity, fat content and breaking force......Page 443
3.4. Effects of storage condition on β-carotenoid and ascorbic acid contents of carrot chips......Page 444
References......Page 445
1. Introduction......Page 446
2.3. Drying treatments......Page 447
2.5.3. Analysis of anthocyanins using LC/MS......Page 448
3.1. Effects of pre-treatments and drying treatments on drying rates......Page 449
4. Conclusions......Page 451
References......Page 452
1. Introduction......Page 454
2.2. Aroma Extraction and Identification......Page 455
2.3. Aroma Retention Kinetics......Page 456
3.3. Aroma extraction and identification......Page 457
4. Final Remarks......Page 458
References......Page 459
1. Introduction......Page 460
2.1.1. Spray drying......Page 461
2.2. Flavor Quantification......Page 462
3.1. Complex Powders by Spray Drying......Page 463
3.2. Comparison of Complex Powders Prepared by Different Methods......Page 464
References......Page 465
1. Introduction......Page 466
2.2. Popping system and methods......Page 467
3.1. Batch-type processing......Page 468
3.2.1. Differential pressure measurements......Page 469
3.2.3. Effect of gas temperature and feed speed (Optimal operating conditions)_......Page 470
References......Page 471
INTRODUCTION......Page 472
Sample Preparation......Page 473
Sorption Isotherm......Page 474
Initial Freezing Point and Tm¢ by Cooling Curve......Page 475
Thermal Transitions by DSC......Page 476
LITERATURE CITED......Page 479
1. INTRODUCTION......Page 481
3.1 Rice Taste Value......Page 482
3.2 Rice Taste Variables of Post-drying Paddy......Page 484
3.3 Relationship between T and MC Obtaining the Best Taste......Page 485
REFERENCES......Page 486
1. Introduction......Page 487
2.2. Optimization relations......Page 489
2.3. Experimental design and optimization......Page 490
3. Results and Discussion......Page 491
References......Page 493
1. Introduction......Page 495
2.2 Determination of dietary fiber contents......Page 496
2.4 Experimental design and data analysis......Page 497
3.1 Drying kinetics......Page 498
3.3 Hydration properties......Page 499
Acknowledgements......Page 500
References......Page 501
1. Introduction......Page 502
2.1. Sample Preparation and Dehydration......Page 503
2.3. Property Analysis......Page 504
3.1 Drying Characteristics......Page 505
References......Page 507
1. Introduction......Page 508
2.1. Sample Preparation......Page 509
2.3. Microwave Assisted Hot-air Drying......Page 510
2.6. Microstructure......Page 511
3. Results and Discussion......Page 512
References......Page 516
1. Introduction......Page 519
2.1. Materials......Page 520
2.3. Experimental design and statistical analysis......Page 521
3.2. Optimization......Page 523
4. Conclusion......Page 524
References......Page 525
1. Introduction......Page 526
2. Material Preparation......Page 527
2.1 Drying method......Page 528
3.2 Drying constants K and activation energy Ea......Page 529
3.3 Effect of drying conditions on quality......Page 530
References......Page 532
1. Introduction......Page 534
2.2. Drying procedure......Page 535
3.1. Drying behaviour of pomegranate peels......Page 536
3.2. Mathematical modeling of drying curves......Page 538
References......Page 539
1. Introduction......Page 540
2.1. Geometrical Description and Boundary Conditions......Page 542
3. Results and Discussion......Page 543
References......Page 545
1. Introduction......Page 547
2. Mathematical Considerations......Page 548
3. Results and Discussion......Page 549
References......Page 552
1. Introduction......Page 554
2. Theoretical Model......Page 555
3. Results and Discussion......Page 556
References......Page 559
Introduction......Page 560
1. Mathematical models......Page 562
2. Experimental system......Page 563
3. Experiments and data treatment......Page 564
4. Result analysis......Page 565
5. Conclusions......Page 566
References......Page 567
1. Introduction......Page 569
2.1. Crank’s model (1975)......Page 570
2.3. Azuara’s model (1992)......Page 571
4. Results and discussion......Page 572
Acknowledgments......Page 574
References......Page 575
1. Introduction......Page 576
2.1. The experiments......Page 577
3.1. Modeling of the thin layer drying of bergamot......Page 578
3.2. Effective Diffusivity and Activation Energy......Page 580
4. Conclusions......Page 581
References......Page 582
1. Introduction......Page 584
2.1. Preparing samples and the dryer for testing......Page 586
3. Results and discussion......Page 588
References......Page 589
2. Heat Transfer Mechanism and Thermal Resistance Analysis......Page 591
2.1.1. Condensation resistance of saturated steam......Page 593
2.1.2. The impact of non-condensable gas on condensation heat exchange......Page 594
2.2. Fouling resistance......Page 595
2.3. Tube wall resistance......Page 596
3.2. Condensation resistance calculation......Page 598
3.5. Material resistance calculation......Page 599
4.1. Non-condensable gas content......Page 600
4.2. Fouling thickness......Page 601
4.4. Material adhesion thickness......Page 602
5. The Correlative Model of Heat Transfer Coefficient in Steam Tube Rotary Drying......Page 603
References......Page 604
1. Introduction......Page 605
2.1. Equations governing Heat and Mass Transfer......Page 606
2.2. Equations for Stresses......Page 607
3. Numerical results......Page 608
4. Secondary rehydration......Page 609
Acknowledgment......Page 610
References......Page 611
Heat Transfer Comparison of Plusating and Steady Flow Jets Michael J. Psimas, T. Patterson, F. Ahrens and J. Loughran......Page 612
2. Method......Page 613
3. Findings......Page 615
References......Page 617
Introduction......Page 618
Software for the design of drying process......Page 619
Atmospheric freeze-drying process......Page 621
Literature......Page 623
1. Introduction......Page 624
2.1. Experimental System......Page 625
2.2. Experimental Scheme......Page 626
3. Results and discussion......Page 627
References......Page 629
1. Introduction......Page 630
2. The Structure of Tower Continuous Vacuum Dryer......Page 631
3. The Structure of Drying Room......Page 632
5. The Selection of Vacuum Pumping System......Page 633
Conclusion......Page 635
References......Page 636
2. Design of pre-drying process......Page 637
4.2.1 Test procedure......Page 642
4.2.2 Data and result......Page 643
6. Conclusion......Page 644
References......Page 645
1. Introduction......Page 646
2. Developing and solving of model......Page 647
References......Page 651
1. Introduction......Page 652
2.1. Uniformity Test......Page 653
2.3. Microwave Rotary Dryer Experiments......Page 654
3.1. Drying Uniformity in Microwave Oven......Page 655
3.3. Microwave Rotary Drying Kinetic......Page 656
References......Page 657
1. Introduction......Page 658
2. The Design of the Horizontal Biomass Gasifier......Page 659
3. CFD Simulation of the Horizontal Gasifier......Page 661
References......Page 663
2. Motivation and Development of Simprosys......Page 664
3.1 Example 1 -- A Drying Flowsheet with Recycled Exhaust Gas Stream......Page 665
3.2 Example 2 -- A Drying Flowsheet with Recycled Material Stream......Page 667
4. Potential Roles of Simprosys in Practice......Page 668
References......Page 669
1. Introduction......Page 671
2. Model......Page 672
3. Simulation of 1D convective drying......Page 674
References......Page 676
1. Introduction......Page 677
2.2. The transition phase......Page 678
2.3. The falling drying rate phase......Page 679
4. Results and Discussion......Page 680
References......Page 682
1. Introduction......Page 683
2. Unified Analysis......Page 684
3. Case Study......Page 686
4. Conclusions......Page 687
References......Page 688
1. Introduction......Page 690
2.2. Experimental setup and procedure......Page 691
3.2. Comparison of dryers......Page 692
3.3. Quality analysis of dried pigment......Page 693
4. Conclusion......Page 694
References......Page 695
1. Introduction......Page 696
3.1.1. Removal of BD internals......Page 697
3.1.2. Effect of salting Bombay ducks......Page 698
4. Effect of Temperature Parameter......Page 699
5.2. Water activity......Page 700
References......Page 701
1. Introduction......Page 702
2.2. Preparation of Materials......Page 703
3.2. Different environmental drying parameters for apple......Page 704
3.3. Influence of size and form for apple......Page 706
References......Page 707
1. Introduction......Page 708
2.2 System Description of SEPCD......Page 710
2.3.3 Total Bacterial Count......Page 711
3. Results and Discussion......Page 712
4. Conclusions......Page 714
References......Page 715
2. Dielectric Properties......Page 716
3.2. Products with medium dielectric losses......Page 718
3.3. Products with high dielectric losses......Page 719
3.4.1. Strawberry......Page 721
3.4.2. Broccoli......Page 722
4. Summary......Page 723
References......Page 724
1. Introduction......Page 725
3.1. Natural drying......Page 726
4.1. Nanoindentation testing......Page 727
4.2. Thermal drying improved hardness of the coating films......Page 728
4.3. Immersing in water improved hardness of the coating films......Page 729
References......Page 730
Author Index......Page 732