دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Harry Elderfield
سری:
ISBN (شابک) : 0080451012, 9780080451015
ناشر: Elsevier
سال نشر: 2006
تعداد صفحات: 625
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 مگابایت
در صورت تبدیل فایل کتاب The oceans and marine geochemistry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اقیانوس ها و ژئوشیمی دریایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
اقیانوس ها برای درک نحوه عملکرد زمین به عنوان یک سیستم یکپارچه بسیار مهم هستند، زیرا ترکیب شیمیایی آن انتقال عناصر را از طریق مخازن ژئوشیمیایی زمین ثبت می کند و همچنین نحوه ترکیب فرآیندهای فیزیکی، بیولوژیکی و شیمیایی را برای تأثیرگذاری بر موضوعات مختلف مانند تغییرات آب و هوایی تعریف می کند. و ظرفیت اقیانوس ها برای حذف فلزات سمی. هدف بسیاری از ژئوشیمی دریایی مدرن، پیوند و ادغام مطالعات اقیانوسهای مدرن با کار با استفاده از پراکسیها برای تعریف چگونگی تغییر شیمی اقیانوس و سیستم اقیانوس/اتمسفر در طول زمان در چندین مقیاس زمانی مختلف است. تمرکز ویژه در چنین کاری چرخه کربن و ارتباط آن با تغییرات گازهای گلخانه ای در جو است. جلد 6 تمام موضوعات مهم مورد نیاز برای چنین رویکرد یکپارچه ای را پوشش می دهد، از ترکیب اقیانوس معاصر، فرآیندهای حمل و نقل در اقیانوس، دیرینه اقلیم شناسی و اقیانوس شناسی دیرینه از نهشته های دریایی، تا تکامل ترکیب آب دریا.
The oceans are vitally important to an understanding of how the Earth works as an integrated system because its chemical composition records transfer of elements through the Earth's geochemical reservoirs as well as defining how physical, biological and chemical processes combine to influence issues as diverse as climate change and the capacity of the oceans to remove toxic metals. Much modern marine geochemistry aims to link and integrate studies of the modern oceans with work using proxies to define how ocean chemistry and the ocean/atmospheric system has changed through time on a number of different timescales. Special focus in such work is the carbon cycle and its link to changes in greenhouse gases in the atmosphere. Volume 6 covers all the important topics needed for such an integrated approach, ranging from the contemporary ocean composition, transport processes in the ocean, paleoclimatology and paleo-oceanography from marine deposits, to the evolution of seawater composition.
Treatise on Geochemistry......Page 2
Executive Editor's Foreword......Page 3
Nomenclature......Page 6
Composition of Seawater......Page 7
Causes of Major Components Not Being Conservative......Page 8
Pressure–Volume–Temperature Properties......Page 9
Application to other Natural Waters......Page 10
Carbonic Acid Equilibria in Seawater......Page 11
Solubility of Fe(III) in Seawater......Page 14
Kinetic Process in Seawater......Page 15
Oxidation of Fe(II) with O2......Page 16
Oxidation of Cu(I) with O2......Page 17
Modeling the Ionic Interactions in Seawater and other Natural Waters......Page 18
Physical-Chemical Properties......Page 19
Estimating Activity Coefficients......Page 20
Acknowledgments......Page 21
References......Page 22
Introduction......Page 27
Concentrations......Page 28
Distributions......Page 31
Rivers......Page 36
Atmosphere......Page 37
Active Biological Uptake in the Surface Waters......Page 39
Passive Scavenging......Page 41
Recycling within the Water Column......Page 43
Complexation with Organic Ligands......Page 44
Copper......Page 45
Iron......Page 46
Zinc......Page 47
References......Page 48
6.03 Gases in Seawater......Page 52
Introduction......Page 53
Air--Sea Gas Exchange Models......Page 54
Laboratory Studies of Air–Water Gas Exchange......Page 57
Field Studies of Air--Sea Gas Transfer......Page 61
Parametrizations of Air–Sea Gas Transfer......Page 64
Remote Sensing and Estimation of Transfer Velocity......Page 65
Introduction......Page 66
The Oceans as a Source of Gases to the Atmosphere......Page 67
The Oceans as a Source and a Sink of Volatile Compounds......Page 74
The Oceans as a Sink for Atmospheric Gases......Page 76
References......Page 78
6.04 The Biological Pump......Page 85
Description of the Biological Pump......Page 86
Photosynthesis and Nutrient Uptake......Page 88
Flocculation and Sinking......Page 90
Particle Decomposition and Repackaging......Page 92
Dissolved Organic Matter......Page 93
Macronutrients......Page 94
Trace Elements......Page 98
Measurement of New Production......Page 101
Measurement of Particle Flux......Page 102
Altering the Efficiency of the Biological Pump......Page 104
Response to Increased CO2......Page 107
Carbon Sequestration via Ocean Fertilization and the Biological Pump......Page 108
References......Page 109
Introduction: The Scope of Marine Bioinorganic Chemistry......Page 114
Concentrations......Page 115
Uptake......Page 117
Trace Element Storage......Page 122
The Biochemical Functions of Trace Elements in the Uptake and Transformations of Nutrients......Page 123
Trace Metals and the Marine Carbon Cycle......Page 124
Trace Metals and the Nitrogen Cycle......Page 127
Iron......Page 129
Manganese......Page 132
Zinc, Cobalt, and Cadmium......Page 133
Copper......Page 137
Nickel......Page 138
Paleoceanographic Aspects......Page 139
Acknowledgments......Page 140
References......Page 141
Introduction......Page 145
Reservoirs......Page 146
Fluxes......Page 148
Background......Page 149
Terrestrial Organic Matter in River Systems......Page 150
Quantitative Importance of Terrigenous Organic Carbon in Marine Sediments......Page 152
Background......Page 154
High Molecular Weight Dissolved Organic Matter: Biopolymers or Geopolymers?......Page 155
Gel Polymers and the Cycling of High Molecular Weight Dissolved Organic Matter......Page 160
Background......Page 162
Compositional Transformations Associated with Sedimentation and Burial of Organic Matter......Page 163
Controls on Organic Matter Preservation......Page 165
Background......Page 170
Planktonic Archea......Page 171
Anaerobic Methane Oxidation......Page 172
Summary and Future Research Directions......Page 173
Acknowledgments......Page 174
References......Page 175
6.07 Hydrothermal Processes......Page 181
What is Hydrothermal Circulation?......Page 182
Where Does Hydrothermal Circulation Occur?......Page 184
Why Should Hydrothermal Fluxes Be Considered Important?......Page 186
Why are Vent-fluid Compositions of Interest?......Page 187
Processes Affecting Vent-fluid Compositions......Page 188
Compositions of Hydrothermal Vent Fluids......Page 194
Geographic Variations in Vent-fluid Compositions......Page 198
Temporal Variability in Vent-fluid Compositions......Page 200
The Net Impact of Hydrothermal Activity......Page 202
Alteration and Mineralization of the Upper Ocean Crust......Page 203
Near-vent Hydrothermal Deposits......Page 204
Dynamics of Hydrothermal Plumes......Page 205
Modification of Gross Geochemical Fluxes......Page 207
Physical Controls on Dispersing Plumes......Page 211
Biogeochemical Interactions in Dispersing Hydrothermal Plumes......Page 212
Hydrothermal Sediments......Page 213
Deposition from Hydrothermal Plumes......Page 214
Hydrothermal Sediments in Paleoceanography......Page 215
References......Page 216
Introduction......Page 223
Theoretical Framework 1: The Advection--Diffusion Equation......Page 225
The Nature of Oceanic Mixing......Page 227
Isopycnal Mixing in the Ocean......Page 228
Theoretical Framework 2: Tracer Ages......Page 229
Radiometric Dating......Page 230
Transient Concentration Dating......Page 232
Theoretical Framework 3: Optimum Multiparameter Analysis and Tracer Age Spectra......Page 233
Radiocarbon......Page 235
Radium......Page 236
Transient Tracers......Page 237
Tracer Release Experiments......Page 241
Concluding Remarks......Page 242
References......Page 243
Nomenclature......Page 247
Tracers of Particle Transport......Page 248
Transfer from Solution to Particles (Scavenging)......Page 249
Important Features of Colloids......Page 252
Rate Constants for Colloid Coagulation......Page 253
Scavenging Rates and Particle Flux......Page 255
Export Flux of POC......Page 256
Non-steady-state Conditions and Advected Fluxes......Page 257
Limitations and Prospects......Page 258
Conceptual Models of Aggregation and Disaggregation......Page 259
Strategies to Evaluate Rate Constants......Page 260
Lead-210......Page 263
Thorium-230......Page 264
Helium-3......Page 267
Summary......Page 268
References......Page 269
Introduction......Page 274
The Organic Carbon Biological Pump......Page 275
CaCO3 Production and Export......Page 276
SiO2 Production and Export......Page 277
Geochemical Signature of the Biological Pump......Page 278
Direct Atmospheric pCO2 Signature of the Biological Pump......Page 280
Controls of Mean Ocean Chemistry......Page 281
References......Page 286
Introduction......Page 291
The Pillars of Organic Matter Diagenesis......Page 292
Organic Matter Diagenesis Down the Redox Progression......Page 295
Factors Controlling Organic Matter Degradation......Page 299
Diagenesis and Preservation of Calcium Carbonate......Page 302
Mechanisms Controlling CaCO3 Burial: Thermodynamics......Page 303
Mechanism of CaCO3 Dissolution: Kinetics......Page 305
Diagenesis and Preservation of Silica......Page 309
Controls on the H4SiO4 Concentration in Sediment Pore Waters: Kinetics......Page 310
The Importance of Aluminum and the Rebirth of ‘‘Reverse Weathering’’......Page 311
Appendix A......Page 313
References......Page 314
6.12 Geochronometry of Marine Deposits......Page 318
Radiocarbon......Page 319
Cosmogenic Nuclides......Page 320
Unbioturbated Deposits......Page 321
Bioturbated Deposits......Page 322
Radiocarbon......Page 323
230Th and 231Pa......Page 325
10Be......Page 327
Volcanic Layers......Page 328
Extension of Dating Techniques......Page 329
The Underlying Assumptions......Page 331
Corals......Page 332
Amino Acid Racemization......Page 334
References......Page 335
Introduction......Page 339
Methods of Sea-level Reconstruction from Oxygen Isotope Measurements......Page 340
230Th and 231Pa Dating: Current Status and Historical Overview......Page 342
230Th and 231Pa Dating: Theory......Page 344
Tests of Dating Assumptions......Page 345
Sources of Error in Age......Page 347
Current Status of Direct Sea-level Reconstruction: The Past 500 kyr......Page 348
Comparison of Direct Sea-level and Benthic Foram Records......Page 354
18’O/16’O-based Sea-level Records......Page 355
Causes of Sea-Level Change and Future Work......Page 356
References......Page 357
6.14 Elemental and Isotopic Proxies of Past Ocean Temperatures......Page 361
A Brief History of Early Research on Geochemical Proxies of Temperature......Page 362
Paleotemperature Equations......Page 364
Secondary Effects and Diagenesis......Page 365
Background......Page 366
Secondary Effects and Diagenesis......Page 367
Results on Historical Timescales......Page 368
Summary of Outstanding Research Issues......Page 369
Background and History......Page 370
Calibration and Paleotemperature Equations......Page 371
Effect of Dissolution......Page 372
Other Secondary Effects: Salinity, pH, Gametogenesis, and Changes in Seawater Mg/Ca......Page 373
Results on Quaternary Timescales......Page 374
Results for the Neogene......Page 375
Magnesium as Paleotemperature Proxies in Ostracoda......Page 376
Paleotemperature Equations......Page 377
Secondary Effects and Diagenesis......Page 378
Results on Historical Timescales......Page 379
Magnesium and Uranium in Corals as Paleotemperature Proxies......Page 380
References......Page 381
Introduction......Page 387
Systematics and Detection......Page 389
Occurrence of Alkenones in Marine Waters and Sediments......Page 392
Genetic and Evolutionary Aspects of Alkenone Production......Page 394
Function......Page 395
Ecological Controls on Alkenone Production and Downward Flux......Page 396
Effects of Water-column Recycling and Sediment Diagenesis on the Alkenone Unsaturation Index......Page 400
Culture Calibrations......Page 403
Particulates......Page 405
Core Tops......Page 406
Synthesis of Calibration......Page 408
Paleotemperature Studies Using the Alkenone Method......Page 409
Holocene High-resolution Studies......Page 410
Millennial-scale Events of the Late Pleistocene and Last Glacial Termination......Page 411
Marine Temperatures during the LGM......Page 413
SST Records of the Late Pleistocene Ice Age Cycles......Page 416
SST before the Late Pleistocene......Page 417
Comparison with other Proxies: delta18O......Page 418
Comparison with other Proxies: Microfossils......Page 419
Comparison with other Proxies: Mg/Ca......Page 420
Conclusions......Page 421
References......Page 422
Introduction......Page 429
Carbon Isotopes......Page 430
Pore-water Chemistry......Page 435
Oxygen Isotopes in Benthic Foraminifera......Page 436
Radiocarbon......Page 437
Geostrophic Shear Estimates from delta18O in Benthic Foraminifera......Page 438
Ocean Circulation during the Last Glacial Maximum......Page 439
Conclusions......Page 443
References......Page 444
Introduction......Page 448
Systematics of Long-lived Isotope Systems in the Earth......Page 449
Early Applications to the Oceans......Page 451
REEs in Seawater......Page 453
Neodymium-isotope Ratios in Seawater......Page 454
Where does Seawater Neodymium Come From?......Page 457
Neodymium Isotopes as Water-mass Tracers......Page 460
The ‘‘Nd Paradox’’......Page 462
Radiogenic Isotopes in Authigenic Ferromanganese Oxides......Page 468
Long-term Time Series in Fe--Mn Crusts......Page 470
Nd–Sr–Pb Isotopes in Terrigenous Sediments......Page 472
Isotopic and Geochronologic Measurements on Individual Mineral Grains......Page 473
Trough Mouth Fans as Archives of Major IRD Sources......Page 474
40’Ar/39’Ar Hornblende Evidence for History of the Laurentide Ice Sheet During the Last Glacial Cycle......Page 476
Final Thoughts......Page 479
References......Page 480
Introduction......Page 485
Concepts......Page 490
Low- and Mid-latitude Ocean......Page 493
High-latitude Ocean......Page 497
Export Production......Page 503
Nutrient Status......Page 505
Integrative Constraints on the Biological Pump......Page 506
Low- and Mid-latitude Ocean......Page 508
High-latitude Ocean......Page 511
Summary and Current Opinion......Page 514
References......Page 516
Introduction......Page 523
Depth of Transition Zone......Page 524
Distribution of CO2-3 Ion in Today’s Deep Ocean......Page 525
Dissolution Mechanisms......Page 527
Dissolution in the Past......Page 531
Sediment-Based Proxies......Page 532
Shell Weights......Page 533
The Boron Isotope Paleo pH Method......Page 534
Zn/Cd Ratios......Page 536
Dissolution and Preservation Events......Page 537
Neutralization of Fossil Fuel CO2......Page 539
References......Page 541
Introduction......Page 544
Cenozoic Deep-sea Stable Isotope Record......Page 545
Oxygen Isotopes and Climate......Page 547
Carbon Isotopes and Ocean Carbon Chemistry......Page 549
Globally Integrated Records of Inputs to the Ocean......Page 550
Decoupled riverine fluxes of strontium and osmium?......Page 552
Reconstructing Seawater Isotope Composition from Sediments......Page 553
Overview of the Cenozoic marine strontium isotope record......Page 554
Overview of the Cenozoic marine osmium isotope record......Page 555
Significance of uplift and weathering of the Himalayan–Tibetan Plateau (HTP)......Page 556
Glaciation and the marine strontium and osmium isotope records......Page 558
Variations in the Strontium and Osmium Isotope Composition of Riverine Input......Page 559
Osmium and Strontium Isotopes as Chemical Weathering Proxies......Page 560
Coupling Benthic Foraminiferal Mg/Ca and Oxygen Isotope Records......Page 561
Cenozoic Benthic Foraminiferal Mg/Ca Records......Page 562
The pH Dependence of Boron Isotope Fractionation......Page 565
Boron Partitioning into Calcite......Page 566
Paleo-pH and Atmospheric CO2 Reconstruction......Page 567
Closing Synthesis: Does Orogenesis lead to Cooling?......Page 569
References......Page 570
Introduction......Page 575
The Hadean (4.5-4.0 Ga)......Page 576
The Isua Supracrustal Belt, Greenland......Page 577
The Mesoarchean Period (3.7-3.0 Ga)......Page 581
The Neoarchean (3.0--2.5 Ga)......Page 583
The Paleoproterozoic (2.5-1.8Ga)......Page 587
The Mesoproterozoic (1.8-1.2 Ga)......Page 591
The Neoproterozoic (1.2-0.54 Ga)......Page 593
Evidence from Marine Evaporites......Page 597
The Mineralogy of Marine Oolites......Page 598
The Magnesium Content of Foraminifera......Page 599
The Spencer--Hardie Model......Page 601
The Role of the Stand of Sea Level......Page 603
Trace Elements in Marine Carbonates......Page 604
The Isotopic Composition of Osmium in Seawater......Page 606
The Isotopic Composition of Sulfur and Carbon in Seawater......Page 607
A Brief Summary......Page 608
References......Page 610
Appendix 1. Periodic Table of the Elements......Page 618
Appendix 2. Table of Isotopes......Page 619
Appendix 3. The Geologic Timescale......Page 623
Appendix 4. Useful Values......Page 624
Back Cover......Page 625