دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Rohan Chopra, Aniruddha M. Godbole, Nipun Sadvilkar, Muzaffar Bashir Shah, Sohom Ghosh, and Dwight Gunning سری: ISBN (شابک) : 9781800208421 ناشر: Packt Publishing Pvt. Ltd. سال نشر: 2020 تعداد صفحات: 0 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 22 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب The Natural Language Processing Workshop به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کارگاه آموزشی پردازش زبان طبیعی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کارگاه پردازش زبان طبیعی شما را از طریق تکنیک های اساسی NLP مانند آماده سازی مجموعه داده ها، جمع آوری متن، استخراج متن و تجزیه و تحلیل احساسات راهنمایی می کند. همانطور که پیشرفت می کنید، با ایجاد چت بات ها و مدل های پویا خود آشنا خواهید شد.
The Natural Language Processing Workshop takes you through fundamental NLP techniques, such as preparing datasets, collecting text, extracting text, and sentiment analysis. As you progress, you'll get to grips with creating your own chatbots and dynamic models.
Cover FM Copyright Table of Contents Preface Chapter 1: Introduction to Natural Language Processing Introduction History of NLP Text Analytics and NLP Exercise 1.01: Basic Text Analytics Various Steps in NLP Tokenization Exercise 1.02: Tokenization of a Simple Sentence PoS Tagging Exercise 1.03: PoS Tagging Stop Word Removal Exercise 1.04: Stop Word Removal Text Normalization Exercise 1.05: Text Normalization Spelling Correction Exercise 1.06: Spelling Correction of a Word and a Sentence Stemming Exercise 1.07: Using Stemming Lemmatization Exercise 1.08: Extracting the Base Word Using Lemmatization Named Entity Recognition (NER) Exercise 1.09: Treating Named Entities Word Sense Disambiguation Exercise 1.10: Word Sense Disambiguation Sentence Boundary Detection Exercise 1.11: Sentence Boundary Detection Activity 1.01: Preprocessing of Raw Text Kick Starting an NLP Project Data Collection Data Preprocessing Feature Extraction Model Development Model Assessment Model Deployment Summary Chapter 2: Feature Extraction Methods Introduction Types of Data Categorizing Data Based on Structure Categorizing Data Based on Content Cleaning Text Data Tokenization Exercise 2.01: Text Cleaning and Tokenization Exercise 2.02: Extracting n-grams Exercise 2.03: Tokenizing Text with Keras and TextBlob Types of Tokenizers Exercise 2.04: Tokenizing Text Using Various Tokenizers Stemming RegexpStemmer Exercise 2.05: Converting Words in the Present Continuous Tense into Base Words with RegexpStemmer The Porter Stemmer Exercise 2.06: Using the Porter Stemmer Lemmatization Exercise 2.07: Performing Lemmatization Exercise 2.08: Singularizing and Pluralizing Words Language Translation Exercise 2.09: Language Translation Stop-Word Removal Exercise 2.10: Removing Stop Words from Text Activity 2.01: Extracting Top Keywords from the News Article Feature Extraction from Texts Extracting General Features from Raw Text Exercise 2.11: Extracting General Features from Raw Text Exercise 2.12: Extracting General Features from Text Bag of Words (BoW) Exercise 2.13: Creating a Bag of Words Zipf\'s Law Exercise 2.14: Zipf\'s Law Term Frequency–Inverse Document Frequency (TFIDF) Exercise 2.15: TFIDF Representation Finding Text Similarity – Application of Feature Extraction Exercise 2.16: Calculating Text Similarity Using Jaccard and Cosine Similarity Word Sense Disambiguation Using the Lesk Algorithm Exercise 2.17: Implementing the Lesk Algorithm Using String Similarity and Text Vectorization Word Clouds Exercise 2.18: Generating Word Clouds Other Visualizations Exercise 2.19: Other Visualizations Dependency Parse Trees and Named Entities Activity 2.02: Text Visualization Summary Chapter 3: Developing a Text Classifier Introduction Machine Learning Unsupervised Learning Hierarchical Clustering Exercise 3.01: Performing Hierarchical Clustering k-means Clustering Exercise 3.02: Implementing k-means Clustering Supervised Learning Classification Logistic Regression Exercise 3.03: Text Classification – Logistic Regression Naive Bayes Classifiers Exercise 3.04: Text Classification – Naive Bayes k-nearest Neighbors Exercise 3.05: Text Classification Using the k-nearest Neighbors Method Regression Linear Regression Exercise 3.06: Regression Analysis Using Textual Data Tree Methods Exercise 3.07: Tree-Based Methods – Decision Tree Random Forest Gradient Boosting Machine and Extreme Gradient Boost Exercise 3.08: Tree-Based Methods – Random Forest Exercise 3.09: Tree-Based Methods – XGBoost Sampling Exercise 3.10: Sampling (Simple Random, Stratified, and Multi-Stage) Developing a Text Classifier Feature Extraction Feature Engineering Removing Correlated Features Exercise 3.11: Removing Highly Correlated Features (Tokens) Dimensionality Reduction Exercise 3.12: Performing Dimensionality Reduction Using Principal Component Analysis Deciding on a Model Type Evaluating the Performance of a Model Exercise 3.13: Calculating the RMSE and MAPE of a Dataset Activity 3.01: Developing End-to-End Text Classifiers Building Pipelines for NLP Projects Exercise 3.14: Building the Pipeline for an NLP Project Saving and Loading Models Exercise 3.15: Saving and Loading Models Summary Chapter 4: Collecting Text Data with Web Scraping and APIs Introduction Collecting Data by Scraping Web Pages Exercise 4.01: Extraction of Tag-Based Information from HTML Files Requesting Content from Web Pages Exercise 4.02: Collecting Online Text Data Exercise 4.03: Analyzing the Content of Jupyter Notebooks (in HTML Format) Activity 4.01: Extracting Information from an Online HTML Page Activity 4.02: Extracting and Analyzing Data Using Regular Expressions Dealing with Semi-Structured Data JSON Exercise 4.04: Working with JSON Files XML Exercise 4.05: Working with an XML File Using APIs to Retrieve Real-Time Data Exercise 4.06: Collecting Data Using APIs Extracting data from Twitter Using the OAuth API Activity 4.03: Extracting Data from Twitter Summary Chapter 5: Topic Modeling Introduction Topic Discovery Exploratory Data Analysis Transforming Unstructured Data to Structured Data Bag of Words Topic-Modeling Algorithms Latent Semantic Analysis (LSA) LSA – How It Works Key Input Parameters for LSA Topic Modeling Exercise 5.01: Analyzing Wikipedia World Cup Articles with Latent Semantic Analysis Dirichlet Process and Dirichlet Distribution Latent Dirichlet Allocation (LDA) LDA – How It Works Measuring the Predictive Power of a Generative Topic Model Exercise 5.02: Finding Topics in Canadian Open Data Inventory Using the LDA Model Activity 5.01: Topic-Modeling Jeopardy Questions Hierarchical Dirichlet Process (HDP) Exercise 5.03: Topics in Around the World in Eighty Days Exercise 5.04: Topics in The Life and Adventures of Robinson Crusoe by Daniel Defoe Practical Challenges State-of-the-Art Topic Modeling Activity 5.02: Comparing Different Topic Models Summary Chapter 6: Vector Representation Introduction What Is a Vector? Frequency-Based Embeddings Exercise 6.01: Word-Level One-Hot Encoding Character-Level One-Hot Encoding Exercise 6.02: Character One-Hot Encoding – Manual Exercise 6.03: Character-Level One-Hot Encoding with Keras Learned Word Embeddings Word2Vec Exercise 6.04: Training Word Vectors Using Pre-Trained Word Vectors Exercise 6.05: Using Pre-Trained Word Vectors Document Vectors Uses of Document Vectors Exercise 6.06: Converting News Headlines to Document Vectors Activity 6.01: Finding Similar News Article Using Document Vectors Summary Chapter 7: Text Generation and Summarization Introduction Generating Text with Markov Chains Markov Chains Exercise 7.01: Text Generation Using a Random Walk over a Markov Chain Text Summarization TextRank Key Input Parameters for TextRank Exercise 7.02: Performing Summarization Using TextRank Exercise 7.03: Summarizing a Children\'s Fairy Tale Using TextRank Activity 7.01: Summarizing Complaints in the Consumer Financial Protection Bureau Dataset Recent Developments in Text Generation and Summarization Practical Challenges in Extractive Summarization Summary Chapter 8: Sentiment Analysis Introduction Why Is Sentiment Analysis Required? The Growth of Sentiment Analysis The Monetization of Emotion Types of Sentiments Emotion Key Ideas and Terms Applications of Sentiment Analysis Tools Used for Sentiment Analysis NLP Services from Major Cloud Providers Online Marketplaces Python NLP Libraries Deep Learning Frameworks The textblob library Exercise 8.01: Basic Sentiment Analysis Using the textblob Library Activity 8.01: Tweet Sentiment Analysis Using the textblob library Understanding Data for Sentiment Analysis Exercise 8.02: Loading Data for Sentiment Analysis Training Sentiment Models Activity 8.02: Training a Sentiment Model Using TFIDF and Logistic Regression Summary Appendix Index