دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Jennifer Beineke. Jason Rosenhouse (eds.)
سری:
ISBN (شابک) : 0691164037, 9780691164038
ناشر: Princeton University Press
سال نشر: 2015
تعداد صفحات: 264
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 مگابایت
کلمات کلیدی مربوط به کتاب ریاضیات موضوعات مختلف سرگرم کننده: تحقیق در ریاضیات تفریحی: بازی های ریاضی، پازل ها و بازی ها، طنز و سرگرمی، تاریخ، ریاضیات، علوم و ریاضی
در صورت تبدیل فایل کتاب The Mathematics of Various Entertaining Subjects: Research in Recreational Math به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ریاضیات موضوعات مختلف سرگرم کننده: تحقیق در ریاضیات تفریحی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تاریخ ریاضیات مملو از پیشرفتهای مهمی است که از راهحلهای مسائل تفریحی ناشی میشود. به عنوان مثال، مشکلات مورد علاقه قماربازان منجر به نظریه مدرن احتمالات شد و اعداد سورئال از بازی Go الهام گرفتند. با این حال، حتی با وجود چنین یافتههای پیشگامانه و انبوهی از کتابهای سطح محبوب که به بررسی پازلها و بازیهای فکری میپردازند، پژوهش در ریاضیات تفریحی اغلب نادیده گرفته شده است. ریاضیات موضوعات سرگرم کننده مختلفنویسندگانی از تخصص های مختلف را گرد هم می آورد تا مسائل و راه حل های جذابی را در ریاضیات تفریحی ارائه دهند.
مشارکت کنندگان این کتاب نشان می دهند که چگونه ریاضیات پیچیده می تواند به ساخت پیچ و خم ها کمک کند. که شبیه افراد مشهور هستند، چگونه تجزیه و تحلیل جدول کلمات متقاطع با درک بیماری های همه گیر مشترک است، و چگونه تئوری مدارهای الکتریکی در درک پازل کلاسیک برج هانوی مفید است. بازی کارتی SET به تئوری کدهای تصحیح خطا مربوط می شود و تیک تاک ساده زمانی که در یک هواپیمای وابسته بازی می شود جان تازه ای به خود می گیرد. الهامبخشهای فراوان کتاب شامل بازیهای رومیزی، حقههای کارت، سکههای جعلی، ضلعهای خمیده، پازلهای مداد، پوکر و موارد دیگر میشود.
با نگاهی به انبوهی از بازیها و پازلهای التقاطی، ریاضیات موضوعات مختلف سرگرم کننده مطمئناً ریاضیدانان دانشگاهی و علاقه مندان به ریاضیات را سرگرم، به چالش می کشد و الهام می بخشد.
The history of mathematics is filled with major breakthroughs resulting from solutions to recreational problems. Problems of interest to gamblers led to the modern theory of probability, for example, and surreal numbers were inspired by the game of Go. Yet even with such groundbreaking findings and a wealth of popular-level books exploring puzzles and brainteasers, research in recreational mathematics has often been neglected. The Mathematics of Various Entertaining Subjects brings together authors from a variety of specialties to present fascinating problems and solutions in recreational mathematics.
Contributors to the book show how sophisticated mathematics can help construct mazes that look like famous people, how the analysis of crossword puzzles has much in common with understanding epidemics, and how the theory of electrical circuits is useful in understanding the classic Towers of Hanoi puzzle. The card game SET is related to the theory of error-correcting codes, and simple tic-tac-toe takes on a new life when played on an affine plane. Inspirations for the book's wealth of problems include board games, card tricks, fake coins, flexagons, pencil puzzles, poker, and so much more.
Looking at a plethora of eclectic games and puzzles, The Mathematics of Various Entertaining Subjects is sure to entertain, challenge, and inspire academic mathematicians and avid math enthusiasts alike.
Foreword by Raymond Smullyan vii Preface and Acknowledgments x PART I VIGNETTES 1 Should You Be Happy? 3 Peter Winkler 2 One-Move Puzzles with Mathematical Content 11 Anany Levitin 3 Minimalist Approaches to Figurative Maze Design 29 Robert Bosch, Tim Chartier, and Michael Rowan 4 Some ABCs of Graphs and Games 43 Jennifer Beineke and Lowell Beineke PART II PROBLEMS INSPIRED BY CLASSIC PUZZLES 5 Solving the Tower of Hanoi with Random Moves 65 Max A. Alekseyev and Toby Berger 6 Groups Associated to Tetraflexagons 81 Julie Beier and Carolyn Yackel 7 Parallel Weighings of Coins 95 Tanya Khovanova 8 Analysis of Crossword Puzzle Difficulty Using a Random Graph Process 105 John K. McSweeney 9 From the Outside In: Solving Generalizations of the Slothouber-Graatsma-Conway Puzzle 127 Derek Smith PART III PLAYING CARDS 10 Gallia Est Omnis Divisa in Partes Quattuor 139 Neil Calkin and Colm Mulcahy 11 Heartless Poker 149 Dominic Lanphier and Laura Taalman 12 An Introduction to Gilbreath Numbers 163 Robert W. Vallin PART IV GAMES 13 Tic-tac-toe on Affine Planes 175 Maureen T. Carroll and Steven T. Dougherty 14 Error Detection and Correction Using SET 199 Gary Gordon and Elizabeth McMahon 15 Connection Games and Sperner\'s Lemma 213 David Molnar PART V FIBONACCI NUMBERS 16 The Cookie Monster Problem 231 Leigh Marie Braswell and Tanya Khovanova 17 Representing Numbers Using Fibonacci Variants 245 Stephen K. Lucas About the Editors 261 About the Contributors 263 Index 269