دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.] سری: ISBN (شابک) : 9783030903831, 3030903834 ناشر: SPRINGER NATURE سال نشر: 2022 تعداد صفحات: [768] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 27 Mb
در صورت تبدیل فایل کتاب the MARINE MICROBIOME به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب میکروبیوم دریایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Foreword Preface References Contents 1: A Sea of Microbes: What´s So Special about Marine Microbiology 1.1 Introduction 1.2 Planet Ocean 1.2.1 Salinity 1.2.2 Origin of Salinity and Early Ocean 1.2.3 Microorganisms in the Ocean 1.2.4 The Oceanic Habitat 1.3 What Is a Marine Microorganism? 1.3.1 What Is a Microorganism? 1.3.2 Do Marine Microorganisms Exist? 1.3.3 How Many Species of Marine Microorganisms Exist? 1.4 (Some) Milestones of Marine Microbiology 1.5 Selected Aspects of the Marine Microbial System 1.5.1 The Redfield Ratio 1.5.2 Nitrogen Fixation 1.5.3 Adaptation to Salt 1.5.4 Sulfate 1.5.5 Freshwater- and Marine Microbiomes: What Are the Boundaries? 1.6 On a Personal Note: How Did I Become a Marine Microbiologist 1.7 Concluding Remarks References Part I: Diversity and Evolution of Marine Microorganisms 2: Survival in a Sea of Gradients: Bacterial and Archaeal Foraging in a Heterogeneous Ocean 2.1 Introduction 2.2 The Physics of Marine Microenvironments 2.2.1 Diffusion and Flow Shape Microscale Nutrient Seascapes Box 2.1 The Batchelor Scale Box 2.2 The Péclet Number 2.2.2 A Bacterial View of the Microscale Ocean 2.3 Sources and Nature of Microscale Gradients in the Ocean 2.3.1 The Phycosphere 2.3.2 Zooplankton Excretion and Sloppy Feeding 2.3.3 Cell Lysis Events 2.3.4 Particles 2.3.5 Transparent Exopolymer Particles 2.3.6 Larger Organisms 2.3.7 Molecular Diversity of Chemoattractants 2.4 Motility and Chemotaxis as Microbial Adaptations to Microscale Heterogeneity in the Ocean 2.4.1 The Molecular Machinery of Chemotaxis 2.4.2 The Roles of Chemotaxis 2.4.3 Mechanics of Motility 2.4.4 Abundance of Motile Prokaryotes 2.4.5 Swimming Speed 2.4.6 Why Do Marine Bacteria Swim Fast? 2.4.7 Energetic Costs and Benefits of Motility 2.4.8 Swimming Patterns 2.5 Recent Insight from Omics Data 2.5.1 Genomes of Marine Bacteria 2.5.2 Metagenomics 2.5.3 Metatranscriptomics 2.6 Influence of Microscale Gradients on Large-Scale Processes 2.6.1 Impacts on Oceanic Primary Production 2.6.2 Impacts on Symbiont Recruitment 2.6.3 Impacts on Rates of Chemical Transformations 2.6.4 Impacts on Exchanges Between Ocean and Atmosphere 2.6.5 Impacts on Exchanges Between Ocean and Sediments 2.7 Summary and Future Directions References 3: Marine Cyanobacteria 3.1 Introduction 3.2 Marine Cyanobacteria and the Next Generation Sequencing Revolution 3.3 Cyanobacterial Origin and Evolution 3.3.1 The Advent of Cyanobacteria and Oxygenic Photosynthesis 3.3.2 Evolutionary History of Marine Cyanobacteria 3.3.3 Adaptation to Salinity 3.3.4 Adaptation to Nitrogen Depletion 3.3.5 Adaptation to Spectral Niches 3.4 Prochlorococcus and Synechococcus 3.4.1 Interest as Model Organisms in Marine Biology and Ecology 3.4.2 Global Abundance and Distribution 3.4.3 Phylogeny 3.4.4 The Wide Genomic Diversity of Marine Picocyanobacteria and Its Taxonomic Implications 3.4.5 Role of Environmental Factors in Genetic and Functional Diversification 3.4.5.1 Prochlorococcus 3.4.5.2 Synechococcus 3.4.6 Prochlorococcus Genome Streamlining 3.4.7 Core, Accessory, and Pangenomes 3.4.8 Potential Biotechnological Value 3.5 Nitrogen-Fixing Cyanobacteria 3.5.1 Ecological Role and Importance of Diazotrophy in Marine Ecosystems 3.5.2 Filamentous Marine Diazotrophs 3.5.2.1 Trichodesmium 3.5.2.2 Nodularia, a Bloom-Forming Cyanobacterium Specifically Adapted to Salinity Gradients 3.5.2.3 Richelia and Calothrix 3.5.3 Unicellular Marine Diazotrophs 3.6 Concluding Remarks References 4: Marine Protists: A Hitchhiker´s Guide to their Role in the Marine Microbiome 4.1 Introduction: The Poetry and Beauty of Protists Through Time Box 4.1 Box 4.2 4.2 Evolutionary Relationships among Protists 4.2.1 A Historical Perspective on Protistan Diversity Box 4.3 4.2.2 Developments in the Understanding of Evolution of Protists 4.2.3 Major Groups of Eukaryotes as of ``Currently´´ 4.2.4 The Contribution of Plastid Acquisition and Evolution to the Generation of Eukaryotic Diversity 4.3 Traits Distinguishing Protists from Other Marine Microbiome Members: Size and Cell Structure 4.3.1 Cell Size of Marine Protists Box 4.4 4.3.2 Cellular Structure and Mosaic Genomes Box 4.5 4.4 Metabolic Exchanges Between Microbiome Members 4.4.1 Symbioses: Manifestation Is a Status Not an Identity 4.4.2 Phycosphere and Metabolic Exchanges 4.4.3 The Holobiont Concept 4.5 Shifting from a Functional Dichotomy to Recognizing the True Complexity of Marine Protists Box 4.6 4.5.1 Pursuing Lines of Protistan Heterotrophy in the Sea 4.5.2 Non-constitutive Mixotrophy (Via Photosynthetic Endosymbionts and Kleptoplasty) Box 4.7 4.5.3 Constitutive Mixotrophy 4.5.4 Diversity and Importance of Photosynthetic Protists 4.6 Distribution and Vertical Dimension of Protistan Diversity and Ecology: From the Sea Surface to Sediments 4.6.1 Protists in the Photic Zone 4.6.2 Protists in the Dark Ocean: Oxygen Minimum Zones and Sediments 4.6.3 Diversity of Marine Protists in the Vertical Dimension 4.7 Forces of Mortality 4.7.1 Timeline of Virus Discovery 4.7.2 Current Perspectives on Viruses of Marine Protists 4.7.3 Diversity of Viruses Infecting Marine Protists 4.7.4 Death of a Protist Via Predation 4.8 Looking Forward 4.8.1 Classics: The Delineation of Protistan Species 4.8.2 Classics: Everything Is Everywhere, but, the Environment Selects Versus Endemism 4.8.3 Classics: Diversity and Stability of Plankton Communities 4.8.4 The Uncultured Majority: Quantifying Activities and Trophic Transfer 4.8.5 Bringing Cell Biology to Bear on the Protistan Role in the Marine Microbiome 4.8.6 Connecting Microbiome Members and Interactions to Ocean Physics and Chemistry 4.8.7 Climate Change and Conservation Box 4.8 References 5: Marine Fungi 5.1 Introduction 5.2 From Culture-Based to Next-Generation Sequencing Methods to Access Marine Fungal Life 5.3 Habitat Specific Community Composition or over-Dispersion? 5.3.1 Plant-Based Habitats 5.3.2 Coastal Waters 5.3.3 Algae 5.3.4 Deep-Sea and Deep Subsurface 5.3.4.1 Deep-Sea Habitats 5.3.4.2 Deep Subsurface Sediments and Oceanic Crust 5.3.5 Polar Waters 5.4 Adaptation of Marine Fungi 5.5 Accessing the Bioremediation Potential of Marine Fungi 5.5.1 Degradation of Hydrocarbons 5.5.2 Degradation of Plastics 5.6 Hints to Ecological Roles Inferred from Secondary Metabolites 5.6.1 Secondary Metabolites (or Specialized Metabolites): A Definition 5.6.2 Marine Fungal Chemodiversity 5.6.3 Marine Fungal SMs and Specificity to the Marine Environment 5.6.4 New Methods to Access the Marine Fungal Metabolome 5.6.5 Marine Fungal Chemical Ecology: Ecological Role of Marine Fungal Metabolites 5.7 From (Meta)Genomes to Bioactive Molecules References 6: Marine Viruses: Agents of Chaos, Promoters of Order 6.1 Introduction 6.2 Consolidating the Role of Marine Viruses 6.2.1 Revisiting the Evidence 6.2.2 The Nutrient Connexion 6.3 Marine Viruses Reviewed 6.3.1 The Ecology of Marine Viruses 6.3.2 Methodological Approaches 6.3.3 Numerical Modelling 6.4 The Omnipresence of Virus in the Sea 6.4.1 Different Environments, Same Incidence 6.4.2 From Surface to Bottom, and deeper 6.5 Recent Developments in Viral Research 6.5.1 The Endless Harvest in the Field of Metagenomics 6.5.2 Novel Applications, Innovative Methodologies, New Protocols 6.5.3 Tackling Omics-Data 6.6 Emergent Themes 6.6.1 Resistance to Infection 6.6.2 Ocean Acidification 6.6.3 Response to Climate Change 6.6.4 Viral Action during Harmful Algal Blooms 6.7 Viruses and Marine Models 6.7.1 Different Modelling Approaches 6.7.2 Challenges Ahead 6.8 Concluding Remarks References 7: Evolutionary Genomics of Marine Bacteria and Archaea 7.1 Introduction 7.2 The Origins of Genomic Diversity in Marine Microbial Populations Box 7.1 Effective population size and its role on microbial evolution 7.3 Streamlining: Genome Simplification in the Open Ocean 7.4 Ecological Factors Influencing Genome Composition 7.5 Genome Evolution in the Dark Ocean 7.6 Virus-Host Interactions Influencing Genome Evolution in Bacteria and Archaea 7.7 Outlook References Part II: Marine Habitats 8: Towards a Global Perspective of the Marine Microbiome 8.1 Marine Microbial Ecology: Opening the Black Box 8.1.1 Major Breakthroughs before the -Omics Revolution 8.1.2 It Is Not Always Black and White: The Discovery of Photoheterotrophs 8.1.3 Are all Microorganisms Equally Active in the Ocean? 8.2 The Marine Microbiome over Space and Time 8.2.1 The Beginning of the Global Exploration of the Marine Microbiome 8.2.2 Seasonality and Temporal Dynamics of Marine Microbial Communities 8.3 Approaches to Link Taxonomy and Function of Marine Bacteria and Archaea 8.3.1 The Genome-Centric Approaches: Single Amplified Genomes (SAGs) and Metagenome Assembled Genomes (MAGs) 8.3.1.1 Single-Amplified Genomes (SAGs) 8.3.1.2 Metagenome Assembled Genomes (MAGs) 8.3.2 The Relevance of Culturing Marine Bacteria in the -Omics Era 8.3.3 Shedding Light on the Active Microbiome 8.4 What Have we Learnt from the Exploration of the Marine Microbiome? 8.4.1 The Unknown Marine Microbial Diversity 8.4.2 Insights into New Metabolic Capacities of Uncultured Microorganisms 8.4.3 Delineation of Ecological Meaningful Units of Uncultured Microorganisms 8.5 Future Perspectives References 9: The Pelagic Light-Dependent Microbiome 9.1 Introduction 9.2 Sunlight as the Dominant Source of Energy in the Epipelagic Zone 9.3 UV Radiation (UVR) in the Euphotic Zone and its Effect on the Microbiome 9.3.1 UVR in the Atmosphere 9.3.2 Factors Affecting UVR Absorption in Seawater 9.3.3 Global Distribution of UVR in the Ocean 9.3.4 Detrimental Effects on the Microbiome and Adaptations to UVR 9.3.5 The Overall Effects of UV-B on Net Community Production (NCP) in the Upper Global Ocean 9.4 Macro and Micronutrient Limitation in the Euphotic Zone 9.4.1 Nutrient Limitation 9.4.2 Nitrogen Limitation 9.4.3 Phosphorus Limitation 9.4.4 Silica Limitation 9.4.5 Iron Limitation 9.5 Subsurface Chlorophyll Maximum Layer (SCML) and Subsurface Biomass Maximum Layer (SBML) 9.6 Mixotrophy in the Euphotic Zone 9.6.1 Defining Mixotrophy 9.6.2 Mixotrophy in Bacteria and Archaea 9.6.3 Mixotrophy in Eukaryotic Microbes 9.7 The Fate of the Ocean Pelagic Lit-Zone Microbiome 9.8 The Marine Microbiome of the Euphotic Zone 9.8.1 Central Oligotrophic Gyres 9.8.2 Higher Latitudes 9.9 The Microbiome of the Euphotic Zone in the Future Ocean References 10: Microbial Inhabitants of the Dark Ocean 10.1 The Dark Ocean: The Largest Habitat in the Biosphere 10.2 The Dark Ocean´s Microbiome 10.2.1 Bacteria Versus Archaea 10.2.2 Diversity and Community Composition of the Dark ocean´s Microbiome 10.2.3 Spatial Heterogeneity of the Dark Ocean Microbiome 10.2.4 Surface: Deep Ocean Connectivity of the Microbiome 10.2.5 Temporal Heterogeneity of the Dark Ocean´s Microbiome 10.3 Functional Diversity of the Dark Ocean´s Microbiome 10.4 Abyssal and Hadal Phylogenetic and Functional Diversity 10.5 Summary References 11: The Subsurface and Oceanic Crust Prokaryotes 11.1 Introduction 11.2 Deep Subseafloor Exploration 11.3 Deep-Sea Biosphere Bacteria and Archaea 11.4 Deep Subseafloor Archaea 11.5 Deep Subseafloor Bacteria 11.6 Conclusions References 12: The Microbiome of Coastal Sediments 12.1 Introduction 12.2 Coastal Autotrophic Microbiomes: Microphytobenthic Biofilms 12.2.1 Diversity of Microphytobenthos in Coastal Sediments 12.2.2 Adaptations of Photoautotrophs to Living in Intertidal Sediments 12.2.3 Distribution of MPB Biomass in Coastal Sediments 12.2.4 Interactions between Photoautotrophs and Chemoheterotrophs and the Turnover of Organic Carbon in Coastal Microbiomes 12.3 Nitrogen Cycling in the Marine Coastal Microbiome 12.3.1 Nitrogen Cycling in Aerobic Coastal Sediments: Nitrification and Aerobic Ammonia Oxidation and Comammox 12.3.2 Environmental Factors Influencing Nitrification and Ammonia Oxidation 12.3.3 Nitrogen Cycling in Anaerobic Coastal Sediments: Anammox, Denitrification, and Dissimilatory Reduction of Nitrate to Am... 12.3.4 Environmental Factors Influencing the Anaerobic Nitrogen Cycling Biome 12.3.5 Nitrogen Fixation in Coastal Sediments 12.4 Archaea in Marine Sediment Microbiomes 12.4.1 An Array of Coastal Archaea: Marine Group III (Putative Pontarchaea), Asgard Archaea, Marine Benthic Group D, and Woesa... 12.4.2 Bathyarchaeota (Miscellaneous Crenarchaeota Group) and Thaumarchaeota Are Generally the Most Abundant Archaea in Marine... 12.4.3 Archaea Drive the Methane Cycle in Coastal Sediments 12.4.4 Haloarchaea Are Consistently Present and Locally Abundant in Coastal Sediments 12.5 The Coastal Fungal Microbiome 12.6 Impacts of Oil Pollution on Coastal Microbiomes 12.6.1 Diversity of Hydrocarbon-Degrading Microbes in Coastal Sediments 12.6.2 Association of Hydrocarbon-Degrading Bacteria with Photoautotrophs 12.6.3 Mechanisms of Oil Biodegradation References 13: Symbiosis in the Ocean Microbiome 13.1 Introduction 13.2 Physical Relationships and the Breadth of Microbial Symbioses 13.2.1 Unattached Microbial Interactions 13.2.2 Ectosymbioses 13.2.3 Endosymbioses 13.3 Mutualistic Nutritional Symbioses: N2 Fixation 13.4 Planktonic Rhizaria and Their Spectrum of Symbioses in the Ocean 13.4.1 Commensalistic and Mutualistic Photosymbioses Among Planktonic Retaria 13.4.2 Photosymbioses, Organelle Acquisition, and the Acantharia-Phaeocystis Symbiosis 13.4.3 Parasitic Symbioses Involving Planktonic Retaria 13.5 Concluding Remarks: Potential Scientific and Technological Benefits of Understanding Symbiosis References 14: Marine Extreme Habitats 14.1 Hydrothermal Vents 14.1.1 Processes and Microorganisms 14.1.1.1 Sulfur Cycling 14.1.1.2 Hydrogen Oxidation 14.1.1.3 Methanogenesis and Anaerobic Oxidation of Methane 14.1.1.4 Other Chemoautotrophic Processes 14.1.1.5 Carbon Fixation 14.1.2 Symbiosis 14.1.3 Microbial Eukaryotes 14.2 Deep Hypersaline Anoxic Basins 14.2.1 Microbial Diversity of the Red Sea DHABs 14.2.2 Microbial Diversity of the Orca DHAB 14.2.3 Microbial Diversity of the Mediterranean DHABs 14.2.4 Microbial Diversity of the ``Bittern´´ Mediterranean Sea DHABs 14.2.5 Culturing Efforts 14.3 Importance of Polyextreme Environments in Biotechnology 14.4 Relevance of Vents and Deep Hypersaline Anoxic Basins for Astrobiology References Part III: Marine Microbiome from Genomes to Phenomes: Biogeochemical Cycles, Networks, Fluxes, and Interaction 15: Marine Biogeochemical Cycles 15.1 Biogeochemistry in the Ocean 15.2 Biogeochemical Cycles 15.2.1 Carbon 15.2.2 Oxygen 15.2.3 Nitrogen 15.2.4 Phosphorus 15.2.5 Sulfur 15.2.6 Trace Gases 15.2.6.1 Methane 15.2.6.2 Nitrous Oxide 15.3 Aggregates and Particles 15.3.1 Particulate Organic Matter 15.3.2 Particulate Inorganic Matter 15.3.3 Remineralization of Organic Material 15.3.4 POM Sedimentation and Associated Elemental Fluxes 15.4 Sediments/Benthic Habitats 15.4.1 Gradients-Depth, Near Versus Offshore 15.4.2 General Biogeochemical Patterns in Sediments 15.4.3 Hot Spots 15.4.4 Deep Biosphere 15.5 Ocean Biogeochemical Cycling in a Changing World References 16: A Holistic Approach for Understanding the Role of Microorganisms in Marine Ecosystems 16.1 Introduction 16.2 Multi-Omics as a Toolbox to Study Diversity and Function of Microbial Communities 16.2.1 Marine Microbiome Analysis Using rRNA Gene Amplicon Sequencing 16.2.2 Metagenomics 16.2.3 Metatranscriptomics and Metaproteomics 16.2.4 Single-Cell Omics 16.2.5 Single-Cell Transcriptomics 16.3 Integration of Omics and Culturing 16.4 Marine Microbial Ecosystems Beyond Genes and Genomes References 17: The Hidden Treasure: Marine Microbiome as Repository of Bioactive Compounds 17.1 Introduction 17.2 The Current Status of Marine Microbe-Derived Drug Discovery 17.2.1 Marine Bacteria 17.2.1.1 Early Discoveries of Marine Bacterial Natural Products 17.2.1.2 Recently Discovered Marine Bacterial Natural Products 17.2.2 Marine Fungi 17.2.2.1 Anti-infective Marine Fungal Natural Products 17.2.2.2 Anticancer Marine Fungal Natural Products 17.2.3 Marine Cyanobacteria 17.3 Emerging Strategies for the Exploration of Marine Bioactive Compounds 17.3.1 In-Situ Isolation Technology 17.3.2 Microbial Co-culture 17.3.2.1 Marine Fungal-Bacterial Co-culture 17.3.2.2 Co-culturing of Marine Bacteria 17.3.2.3 Co-culturing of Marine Fungi 17.3.3 The OSMAC (One Strain Many Compounds) Approach 17.3.3.1 OSMAC with Alteration of Food Source 17.3.3.2 OSMAC with Solid and Liquid Media 17.3.3.3 OSMAC with Changes in Physical Factors 17.3.4 Chemical Elicitation 17.3.4.1 Quorum Sensing Elicitors 17.3.4.2 Epigenetic Elicitation References 18: Ocean Restoration and the Strategic Plan of the Marine Microbiome 18.1 Introduction 18.2 The Marine Microbiome in Ocean Restoration 18.2.1 Importance of the Marine Microbiome 18.2.2 The Potential of the Marine Microbiome in Ocean Restoration 18.2.3 State-of-the-Art in Ocean Restoration 18.2.3.1 Climate Change and Corals 18.2.3.2 Oil Spills 18.2.3.3 Plastic Pollution Case Study 1: State of the Art Project Generating New Knowledge: MycoPLAST 18.2.3.4 Endocrine Disrupting Chemicals Case Study 2: State of the Art Project Generating New Knowledge: MER-CLUB 18.3 Policy and Governance. The Current State and Future Expectations 18.4 Strategic Communication Around Usage of the Marine Microbiome in Ocean Restoration 18.5 Ocean Literacy 18.6 Knowledge Transfer 18.7 Discussion and Conclusion References