دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: David Ping
سری:
ISBN (شابک) : 1801072167, 9781801072168
ناشر: Packt Publishing
سال نشر: 2022
تعداد صفحات: 440
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 Mb
در صورت تبدیل فایل کتاب The Machine Learning Solutions Architect Handbook: Create machine learning platforms to run solutions in an enterprise setting به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب راهنمای معمار راه حل های یادگیری ماشین: ایجاد پلتفرم های یادگیری ماشین برای اجرای راه حل ها در یک محیط سازمانی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ساخت پلتفرمهای یادگیری ماشینی بسیار امن و مقیاسپذیر برای پشتیبانی از پذیرش سریع راهحلهای یادگیری ماشین
با یک پلتفرم یادگیری ماشینی (ML) بسیار مقیاسپذیر، سازمانها میتوانند به سرعت تحویل را مقیاسپذیر کنند. محصولات ML برای تحقق سریعتر ارزش تجاری، بنابراین تقاضای زیادی برای معماران ماهر راه حل های ML در صنایع مختلف وجود دارد. این کتاب عملی ML شما را از طریق الگوهای طراحی، ملاحظات معماری و آخرین فناوریهایی که برای تبدیل شدن به یک معمار موفق راهحلهای ML باید بدانید، راهنمایی میکند.
شما با درک اصول ML و چگونگی شروع به کار خواهید کرد. ML را می توان برای مشکلات تجاری در دنیای واقعی اعمال کرد. هنگامی که برخی از الگوریتم های پیشرو ML را برای حل انواع مختلف مسائل بررسی کردید، این کتاب به شما کمک می کند تا با مدیریت داده ها و استفاده از کتابخانه های ML مانند TensorFlow و PyTorch آشنا شوید. شما یاد خواهید گرفت که چگونه از فناوری منبع باز مانند Kubernetes/Kubeflow برای ایجاد یک محیط علم داده و خطوط لوله ML استفاده کنید و سپس با استفاده از خدمات وب سرویس های آمازون (AWS) به ساخت معماری ML سازمانی بپردازید. سپس ملاحظات امنیتی و حاکمیتی، تکنیک های پیشرفته مهندسی ML، و نحوه اعمال تشخیص سوگیری، توضیح پذیری و حریم خصوصی در توسعه مدل ML را پوشش خواهید داد. در نهایت، با سرویسهای هوش مصنوعی AWS و کاربردهای آنها در موارد استفاده در دنیای واقعی آشنا میشوید.
در پایان این کتاب، میتوانید یک پلتفرم ML برای پشتیبانی مشترک طراحی و بسازید. از موارد و الگوهای معماری استفاده کنید.
این کتاب برای دانشمندان داده، مهندسان داده، معماران ابر و علاقه مندان به یادگیری ماشین است که می خواهند معمار راه حل های یادگیری ماشین شوند. دانش اولیه زبان برنامه نویسی پایتون، AWS، جبر خطی، احتمالات و مفاهیم شبکه فرض شده است.
Build highly secure and scalable machine learning platforms to support the fast-paced adoption of machine learning solutions
With a highly scalable machine learning (ML) platform, organizations can quickly scale the delivery of ML products for faster business value realization, so there is a huge demand for skilled ML solutions architects in different industries. This hands-on ML book takes you through the design patterns, architectural considerations, and the latest technology that you need to know to become a successful ML solutions architect.
You'll start by understanding ML fundamentals and how ML can be applied to real-world business problems. Once you've explored some of the leading ML algorithms for solving different types of problems, the book will help you get to grips with data management and using ML libraries such as TensorFlow and PyTorch. You'll learn how to use open source technology such as Kubernetes/Kubeflow to build a data science environment and ML pipelines and then advance to building an enterprise ML architecture using Amazon Web Services (AWS) services. You'll then cover security and governance considerations, advanced ML engineering techniques, and how to apply bias detection, explainability, and privacy in ML model development. Finally, you'll get acquainted with AWS AI services and their applications in real-world use cases.
By the end of this book, you'll be able to design and build an ML platform to support common use cases and architecture patterns.
This book is for data scientists, data engineers, cloud architects, and machine learning enthusiasts who want to become machine learning solutions architects. Basic knowledge of the Python programming language, AWS, linear algebra, probability, and networking concepts is assumed.
Cover Title Page Copyright and Credits Contributors Table of Contents Preface Section 1: Solving Business Challenges with Machine Learning Solution Architecture Chapter 1: Machine Learning and Machine Learning Solutions Architecture What are AI and ML? Supervised ML Unsupervised ML Reinforcement learning ML versus traditional software ML life cycle Business understanding and ML problem framing Data understanding and data preparation Model training and evaluation Model deployment Model monitoring Business metric tracking ML challenges ML solutions architecture Business understanding and ML transformation Identification and verification of ML techniques System architecture design and implementation ML platform workflow automation Security and compliance Testing your knowledge Summary Chapter 2: Business Use Cases for Machine Learning ML use cases in financial services Capital markets front office Capital markets back office operations Risk management and fraud Insurance ML use cases in media and entertainment Content development and production Content management and discovery Content distribution and customer engagement ML use cases in healthcare and life sciences Medical imaging analysis Drug discovery Healthcare data management ML use cases in manufacturing Engineering and product design Manufacturing operations – product quality and yield Manufacturing operations – machine maintenance ML use cases in retail Product search and discovery Target marketing Sentiment analysis Product demand forecasting ML use case identification exercise Summary Section 2: The Science, Tools, and Infrastructure Platform for Machine Learning Chapter 3: Machine Learning Algorithms Technical requirements How machines learn Overview of ML algorithms Consideration for choosing ML algorithms Algorithms for classification and regression problems Algorithms for time series analysis Algorithms for recommendation Algorithms for computer vision problems Algorithms for natural language processing problems Generative model Hands-on exercise Problem statement Dataset description Setting up a Jupyter Notebook environment Running the exercise Summary Chapter 4: Data Management for Machine Learning Technical requirements Data management considerations for ML Data management architecture for ML Data storage and management Data ingestion Data cataloging Data processing Data versioning ML feature store Data serving for client consumption Authentication and authorization Data governance Hands-on exercise – data management for ML Creating a data lake using Lake Formation Creating a data ingestion pipeline Creating a Glue catalog Discovering and querying data in the data lake Creating an Amazon Glue ETL job to process data for ML Building a data pipeline using Glue workflows Summary Chapter 5: Open Source Machine Learning Libraries Technical requirements Core features of open source machine learning libraries Understanding the scikit-learn machine learning library Installing scikit-learn Core components of scikit-learn Understanding the Apache Spark ML machine learning library Installing Spark ML Core components of the Spark ML library Understanding the TensorFlow deep learning library Installing Tensorflow Core components of TensorFlow Hands-on exercise – training a TensorFlow model Understanding the PyTorch deep learning library Installing PyTorch Core components of PyTorch Hands-on exercise – building and training a PyTorch model Summary Chapter 6: Kubernetes Container Orchestration Infrastructure Management Technical requirements Introduction to containers Kubernetes overview and core concepts Networking on Kubernetes Service mesh Security and access management Network security Authentication and authorization to APIs Running ML workloads on Kubernetes Hands-on – creating a Kubernetes infrastructure on AWS Problem statement Lab instruction Summary Section 3: Technical Architecture Design and Regulatory Considerations for Enterprise ML Platforms Chapter 7: Open Source Machine Learning Platforms Technical requirements Core components of an ML platform Open source technologies for building ML platforms Using Kubeflow for data science environments Building a model training environment Registering models with a model registry Serving models using model serving services Automating ML pipeline workflows Hands-on exercise – building a data science architecture using open source technologies Part 1 – Installing Kubeflow Part 2 – tracking experiments and models, and deploying models Part 3 – Automating with an ML pipeline Summary Chapter 8: Building a Data Science Environment Using AWS ML Services Technical requirements Data science environment architecture using SageMaker SageMaker Studio SageMaker Processing SageMaker Training Service SageMaker Tuning SageMaker Experiments SageMaker Hosting Hands-on exercise – building a data science environment using AWS services Problem statement Dataset Lab instructions Summary Chapter 9: Building an Enterprise ML Architecture with AWS ML Services Technical requirements Key requirements for an enterprise ML platform Enterprise ML architecture pattern overview Model training environment Model training engine Automation support Model training life cycle management Model hosting environment deep dive Inference engine Authentication and security control Monitoring and logging Adopting MLOps for ML workflows Components of the MLOps architecture Monitoring and logging Hands-on exercise – building an MLOps pipeline on AWS Creating a CloudFormation template for the ML training pipeline Creating a CloudFormation template for the ML deployment pipeline Summary Chapter 10: Advanced ML Engineering Technical requirements Training large-scale models with distributed training Distributed model training using data parallelism Distributed model training using model parallelism Achieving low latency model inference How model inference works and opportunities for optimization Hardware acceleration Model optimization Graph and operator optimization Model compilers Inference engine optimization Hands-on lab – running distributed model training with PyTorch Modifying the training script Modifying and running the launcher notebook Summary Chapter 11: ML Governance, Bias, Explainability, and Privacy Technical requirements What is ML governance and why is it needed? The regulatory landscape around model risk management Common causes of ML model risks Understanding the ML governance framework Understanding ML bias and explainability Bias detection and mitigation ML explainability techniques Designing an ML platform for governance Data and model documentation Model inventory Model monitoring Change management control Lineage and reproducibility Observability and auditing Security and privacy-preserving ML Hands-on lab – detecting bias, model explainability, and training privacy-preserving models Overview of the scenario Detecting bias in the training dataset Explaining feature importance for the trained model Training privacy-preserving models Chapter 12: Building ML Solutions with AWS AI Services Technical requirements What are AI services? Overview of AWS AI services Amazon Comprehend Amazon Textract Amazon Rekognition Amazon Transcribe Amazon Personalize Amazon Lex Amazon Kendra Evaluating AWS AI services for ML use cases Building intelligent solutions with AI services Automating loan document verification and data extraction Media processing and analysis workflow E-commerce product recommendation Customer self-service automation with intelligent search Designing an MLOps architecture for AI services AWS account setup strategy for AI services and MLOps Code promotion across environments Monitoring operational metrics for AI services Hands-on lab – running ML tasks using AI services Summary Index About Packt Other Books You May Enjoy