دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Elena Anne Corie Marchisotto, Francisco Rodríguez-Consuegra, James T. Smith سری: ISBN (شابک) : 0817648224, 9780817648220 ناشر: Birkhäuser سال نشر: 2021 تعداد صفحات: 625 [622] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 Mb
در صورت تبدیل فایل کتاب The Legacy of Mario Pieri in Foundations and Philosophy of Mathematics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب میراث ماریو پیری در مبانی و فلسفه ریاضیات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ماریو پیری در مورد مبانی فلسفه و ریاضیات، خوانندگان را با حرفه پیری و مطالعات او در بنیادها، از دیدگاه تاریخی و مدرن آشنا می کند، زندگی و تحقیقات او را در زمینه قرار می دهد و تأثیر او را بر معاصرانش و همچنین ریاضیدانان جدیدتر ردیابی می کند. این متن همچنین شامل ترجمه ها و تفسیرهایی بر تحلیل های اصلی پیری در مورد هندسه تصویری، هندسه تحولی است.
Mario Pieri on the Foundations of Philosophy and Mathematics introduces readers to Pieri’s career and his studies in foundations, from both historical and modern viewpoints, placing his life and research in context and tracing his influence on his contemporaries as well as more recent mathematicians. The text also includes translations and commentary on Pieri’s original analyses on projective geometry, transformational geometry.
Foreword Preface Style and Translation Evolution of the Project and Acknowledgments Contents Illustrations 1 Pieri’s Contributions to Foundations and Philosophy of Mathematics 1.1 Pieri, the Man, the Scholar, the Teacher 1.2 Philosophy of Mathematics and Mathematical Logic 1.3 Foundations of Geometry 2 Pieri’s Philosophy of Deductive Sciences 2.1 Primitive Concepts 2.2 Definitions 2.3 Definitions by Abstraction 2.4 Postulates, or Primitive Propositions 2.5 Proofs 2.6 Abstract Deductive Science 2.7 Logic and Mathematics 2.8 Pieri's Letter to Russell 2.9 Metamathematics 2.10 Semantics and Model Theory 2.11 Nominalism 3 Two Paths to Logical Consequence: Pieri and the Peano School 3.1 Tarski’s Definition of Consequence 3.2 Aristotle’s Counterexample Method 3.3 Independence of the Parallel Postulate 3.4 Logical Consequence in a Model-Theoretic Context: The Peano School 3.4.1 Peano 3.4.2 Pieri 3.4.3 Padoa 4 Pieri’s 1900 Paris Paper ON GEOMETRY ENVISAGED AS A PURELY LOGICAL SYSTEM § I § II § III § IV § V § VI § VII 5 Pieri and Projective Geometry 5.1 Pieri’s Studies, Research, and Teaching 5.2 Evolution of Projective Ideas and Methods 5.3 Synthetic Projective Geometry as an Autonomous Field 5.4 Geometry as a Logical System 5.5 The Transformational Approach 5.6 Multidimensional Projective Geometry 5.7 From Duality to Plurality 6 Pieri’s 1898 Geometry of Position Memoir THE PRINCIPLES OF THE GEOMETRY OF POSITION LIST OF ABBREVIATIONS § 1 The Primitive Entities POSTULATE I POSTULATE II POSTULATE III POSTULATES IV AND V POSTULATE VI POSTULATE VII POSTULATE VIII POSTULATE IX POSTULATE X § 2 The Alignment Relation and the Projective Line POSTULATE XI § 3 The Visual of a Form and Projective Planes POSTULATE XII § 4 The Plane Quadrangle and the Harmonic Relation POSTULATE XIII. POSTULATE XIV § 5 The Projective Segment POSTULATE XV POSTULATE XVI POSTULATE XVII § 6 Further Properties of Segments § 7 Natural Orderings and Senses of a Projective Line § 8 The Projective Triangle § 9 Segmental Transformations POSTULATE XVIII § 10 Harmonic Correspondences and STAUDT’s Theorem § 11 Projective Hyperplanes of the Third Species and Ordinary Space POSTULATE XIX § 12 Projective Hyperplanes of the nth Species and Absolute Projective Space POSTULATE XIX' POSTULATE XX' APPENDIX 7 Transformational Geometry 7.1 Motions and Transformations 7.2 Isometries and Similarities 7.3 Transformations as Tools 7.4 Transformations in Foundational Studies 7.5 Postlude 8 Pieri’s 1900 Point and Motion Memoir ON ELEMENTARY GEOMETRY LIST OF ABBREVIATIONS §1 Generalities about point and about motion. The relation of collinearity among points. Line, plane, and sphere are introduced. POSTULATE I POSTULATES II and III POSTULATE IV POSTULATE V POSTULATE VI POSTULATE VII POSTULATE VIII POSTULATE IX §2 Rotating a line onto itself. Midpoint of a pair of points. Rotating a plane onto itself. Orthogonality relation among three points or between two intersecting lines POSTULATE X POSTULATE XI POSTULATE XII POSTULATE XIII POSTULATE XIV §3 Rotating one plane onto another. Orthogonality of lines and planes. Various properties relating to lines, planes, and spheres. POSTULATE XV POSTULATE XVI § 4 Points internal or external to a sphere. Segments, rays, half-planes, angles, and so on. POSTULATE XVII POSTULATE XVIII POSTULATE XIX §5 Relation less than or greater than between two segments or between two angles. Triangle is introduced. Congruence of triangles and other propositions of the first and third books of Euclid. §6 Sum of two segments. Other properties of triangles, circles, and so on. Continuity of a line. POSTULATE XX 9 Pieri’s Works on Foundations and Philosophy of Mathematics 9.1 Course Materials and a Translation 9.1.1 Higher Geometry Lectures by Riccardo De Paolis 1882–1883 1883–1884 9.1.2 Geometry of Position by G. K. C. von Staudt Pieri’s Treatment of the Fundamental Theorem Pieri’s Handwritten Notations 9.1.3 Projective Geometry: Lectures at the Military Academy 9.1.4 Course Records from Catania University Archives 9.1.5 Projective Geometry: Lectures at Parma Pieri 1910 Pieri 1911c 9.1.6 Descriptive Geometry: Lectures at Parma 9.2 Foundations of Projective Geometry 9.2.1 Principles That Support the Geometry of Position 9.2.2 Postulates for Abstract Projective Geometry of Hyperspaces 9.2.3 Primitive Entities of Abstract Projective Geometry 9.2.4 Intermezzo (1897b) 9.2.5 Principles of the Geometry of Position Composed into a Deductive Logical System 9.2.6 New Method for Developing Projective Geometry Deductively 9.2.7 Principles That Support the Geometry of Lines 9.2.8 Staudt’s Fundamental Theorem and the Principles of Projective Geometry Introduction (§1) Proof of the Fundamental Theorem (§2) Results Not Dependent on Continuity Principles (§3–§6) Continuity and Archimedean Principles Pieri’s Archimedean Postulate XVIII' (§1, §7–§9) Pieri’s Postulate XVIII'' (§9) Real Projective Geometry of Degree < 2 (§10–§11) Conclusion 9.2.9 New Principles of Complex Projective Geometry Background Axiomatic Framework Incidence Postulates and Dependence (§1) Chains (§2–§4) Coordinates and Cross Ratios (§7) Further Topics, from §4–§7 and 1906a Conclusion 9.2.10 On the Staudtian Definition of Homography 9.3 Foundations of Elementary and Inversive Geometry 9.3.1 On Elementary Geometry as a Hypothetical Deductive System: Monograph on Point and Motion 9.3.2 Elementary Geometry Based on the Notions of Point and Sphere 9.3.3 New Principles of the Geometry of Inversions 9.4 Arithmetic, Logic, and Philosophy of Science 9.4.1 Geometry Envisioned as a Purely Logical System 9.4.2 On an Arithmetical Definition of the Irrationals 9.4.3 A Look at the New Logico-Mathematical Direction of the Deductive Sciences 9.4.4 On the Consistency of the Axioms of Arithmetic 9.4.5 On the Axioms of Arithmetic 10 Central Themes and Impact of Pieri’s Work 10.1 Philosophical Themes in Pieri’s Research 10.2 Themes in Foundations of Geometry Pieri’s Views on Abstract Mathematics 10.2.1 Geometry as an Abstract Science 10.2.2 Geometry from a Synthetic Perspective 10.2.3 Geometry from a Transformational Point of View 10.2.4 Geometries Constructed as Autonomous Disciplines 10.2.5 Continuity and Archimedean Principles 10.2.6 Minimizing the Number of Primitive Notions 10.3 Pedagogical Themes Projective Geometry Inversive and Elementary Geometry 10.4 Pieri’s Impact 10.4.1 Philosophy 10.4.2 Foundations of Geometry Projective Geometry Inversive Geometry Elementary Geometry 10.4.3 Pedagogy 10.5 Opportunities for Future Research Foundations of Geometry Pedagogy Logic and Philosophy Appendix A.1 Errata and Addenda for Marchisotto and Smith 2007 A.1.1 Errors and Corrections A.1.2 New Items for Chapter 6: Pieri’s Works A.2 Two Letters from Louis Couturat A.3 Russell’s Annotations on Principles of the Geometry of Position A.4 Pieri’s 1905b letter to Oswald Veblen Bibliography Permissions and Credits Index of Persons Index of Subjects