دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: R. Anandan, Suseendran Gopalakrishnan, Souvik Pal, Noor Zaman سری: Advances in Learning Analytics for Intelligent Cloud-IoT Systems ISBN (شابک) : 9781119768777 ناشر: Wiley-Scrivener سال نشر: 2022 تعداد صفحات: 417 [418] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 27 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب The Industrial Internet of Things (IIoT): Intelligent Analytics for Predictive Maintenance به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اینترنت صنعتی اشیاء (IIoT): تجزیه و تحلیل هوشمند برای تعمیر و نگهداری پیشگو نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب در مورد اینکه چگونه اینترنت صنعتی از طریق افزایش چابکی شبکه، هوش مصنوعی یکپارچه (AI) و ظرفیت استقرار، خودکارسازی، هماهنگسازی و ایمنسازی موارد مختلف کاربر در مقیاس فوقالعاده، تقویت میشود. از آنجایی که اینترنت اشیا (IoT) بر تمام بخشهای فناوری، از خانه تا صنعت، تسلط دارد، اتوماسیون از طریق دستگاههای IoT در حال تغییر فرآیندهای زندگی روزمره ما است. برای مثال، کسبوکارهای بیشتری در حال پذیرش و پذیرش اتوماسیون صنعتی در مقیاس بزرگ هستند، به طوری که انتظار میرود بازار رباتهای صنعتی در سال 2023 به 73.5 میلیارد دلار برسد. راندمان، دقت بالا، مقرون به صرفه بودن، تکمیل سریع فرآیند، مصرف انرژی کم، خطاهای کمتر و سهولت کنترل. 15 فصل این کتاب، اتوماسیون صنعتی از طریق اینترنت اشیا را با شامل مطالعات موردی در حوزههای IIoT، سیستمهای رباتیک و هوشمند، و برنامههای کاربردی مبتنی بر وب به نمایش میگذارد که مورد علاقه متخصصان شاغل و کسانی است که در آموزش و پژوهش درگیر هستند. مقطع گسترده ای از رشته های فنی حجم به رهبران صنعت کمک خواهد کرد تجربه عملی پیشرفته کار با معماری صنعتی نشان دادن پتانسیل پلتفرمها، تجزیه و تحلیل و پروتکلهای صنعتی اینترنت اشیا مبتنی بر ابر ارائه مدل های کسب و کار برای احیای نیروی کار با Industry 4.0. حضار محققان و محققان در مهندسی صنایع و تولید، هوش مصنوعی، سیستمهای فیزیکی سایبری، رباتیک، مهندسی ایمنی، سیستمهای ایمنی حیاتی، و جوامع حوزه کاربردی مانند هوافضا، کشاورزی، خودرو، زیرساختهای حیاتی، مراقبتهای بهداشتی، تولید، خردهفروشی، حملونقل هوشمند ، شهرهای هوشمند و مراقبت های بهداشتی هوشمند.
This book discusses how the industrial internet will be augmented through increased network agility, integrated artificial intelligence (AI) and the capacity to deploy, automate, orchestrate, and secure diverse user cases at hyperscale. Since the internet of things (IoT) dominates all sectors of technology, from home to industry, automation through IoT devices is changing the processes of our daily lives. For example, more and more businesses are adopting and accepting industrial automation on a large scale, with the market for industrial robots expected to reach $73.5 billion in 2023. The primary reason for adopting IoT industrial automation in businesses is the benefits it provides, including enhanced efficiency, high accuracy, cost-effectiveness, quick process completion, low power consumption, fewer errors, and ease of control. The 15 chapters in the book showcase industrial automation through the IoT by including case studies in the areas of the IIoT, robotic and intelligent systems, and web-based applications which will be of interest to working professionals and those in education and research involved in a broad cross-section of technical disciplines. The volume will help industry leaders by Advancing hands-on experience working with industrial architecture Demonstrating the potential of cloud-based Industrial IoT platforms, analytics, and protocols Putting forward business models revitalizing the workforce with Industry 4.0. Audience Researchers and scholars in industrial engineering and manufacturing, artificial intelligence, cyber-physical systems, robotics, safety engineering, safety-critical systems, and application domain communities such as aerospace, agriculture, automotive, critical infrastructures, healthcare, manufacturing, retail, smart transports, smart cities, and smart healthcare.
Cover Half-Title Page Series Page Title Page Copyright Page Contents Preface 1 A Look at IIoT: The Perspective of IoT Technology Applied in the Industrial Field 1.1 Introduction 1.2 Relationship Between Artificial Intelligence and IoT 1.2.1 AI Concept 1.2.2 IoT Concept 1.3 IoT Ecosystem 1.3.1 Industry 4.0 Concept 1.3.2 Industrial Internet of Things 1.4 Discussion 1.5 Trends 1.6 Conclusions References 2 Analysis on Security in IoT Devices— An Overview 2.1 Introduction 2.2 Security Properties 2.3 Security Challenges of IoT 2.3.1 Classification of Security Levels 2.3.1.1 At Information Level 2.3.1.2 At Access Level 2.3.1.3 At Functional Level 2.3.2 Classification of IoT Layered Architecture 2.3.2.1 Edge Layer 2.3.2.2 Access Layer 2.3.2.3 Application Layer 2.4 IoT Security Threats 2.4.1 Physical Device Threats 2.4.1.1 Device-Threats 2.4.1.2 Resource Led Constraints 2.4.2 Network-Oriented Communication Assaults 2.4.2.1 Structure 2.4.2.2 Protocol 2.4.3 Data-Based Threats 2.4.3.1 Confidentiality 2.4.3.2 Availability 2.4.3.3 Integrity 2.5 Assaults in IoT Devices 2.5.1 Devices of IoT 2.5.2 Gateways and Networking Devices 2.5.3 Cloud Servers and Control Devices 2.6 Security Analysis of IoT Platforms 2.6.1 ARTIK 2.6.2 GiGA IoT Makers 2.6.3 AWS IoT 2.6.4 Azure IoT 2.6.5 Google Cloud IoT (GC IoT) 2.7 Future Research Approaches 2.7.1 Blockchain Technology 2.7.2 5G Technology 2.7.3 Fog Computing (FC) and Edge Computing (EC) References 3 Smart Automation, Smart Energy, and Grid Management Challenges 3.1 Introduction 3.2 Internet of Things and Smart Grids 3.2.1 Smart Grid in IoT 3.2.2 IoT Application 3.2.3 Trials and Imminent Investigation Guidelines 3.3 Conceptual Model of Smart Grid 3.4 Building Computerization 3.4.1 Smart Lighting 3.4.2 Smart Parking 3.4.3 Smart Buildings 3.4.4 Smart Grid 3.4.5 Integration IoT in SG 3.5 Challenges and Solutions 3.6 Conclusions References 4 Industrial Automation (IIoT) 4.0: An Insight Into Safety Management 4.1 Introduction 4.1.1 Fundamental Terms in IIoT 4.1.1.1 Cloud Computing 4.1.1.2 Big Data Analytics 4.1.1.3 Fog/Edge Computing 4.1.1.4 Internet of Things 4.1.1.5 Cyber-Physical-System 4.1.1.6 Artificial Intelligence 4.1.1.7 Machine Learning 4.1.1.8 Machine-to-Machine Communication 4.1.2 Intelligent Analytics 4.1.3 Predictive Maintenance 4.1.4 Disaster Predication and Safety Management 4.1.4.1 Natural Disasters 4.1.4.2 Disaster Lifecycle 4.1.4.3 Disaster Predication 4.1.4.4 Safety Management 4.1.5 Optimization 4.2 Existing Technology and Its Review 4.2.1 Survey on Predictive Analysis in Natural Disasters 4.2.2 Survey on Safety Management and Recovery 4.2.3 Survey on Optimizing Solutions in Natural Disasters 4.3 Research Limitation 4.3.1 Forward-Looking Strategic Vision (FVS) 4.3.2 Availability of Data 4.3.3 Load Balancing 4.3.4 Energy Saving and Optimization 4.3.5 Cost Benefit Analysis 4.3.6 Misguidance of Analysis 4.4 Finding 4.4.1 Data Driven Reasoning 4.4.2 Cognitive Ability 4.4.3 Edge Intelligence 4.4.4 Effect of ML Algorithms and Optimization 4.4.5 Security 4.5 Conclusion and Future Research 4.5.1 Conclusion 4.5.2 Future Research References 5 An Industrial Perspective on Restructured Power Systems Using Soft Computing Techniques 5.1 Introduction 5.2 Fuzzy Logic 5.2.1 Fuzzy Sets 5.2.2 Fuzzy Logic Basics 5.2.3 Fuzzy Logic and Power System 5.2.4 Fuzzy Logic—Automatic Generation Control 5.2.5 Fuzzy Microgrid Wind 5.3 Genetic Algorithm 5.3.1 Important Aspects of Genetic Algorithm 5.3.2 Standard Genetic Algorithm 5.3.3 Genetic Algorithm and Its Application 5.3.4 Power System and Genetic Algorithm 5.3.5 Economic Dispatch Using Genetic Algorithm 5.4 Artificial Neural Network 5.4.1 The Biological Neuron 5.4.2 A Formal Definition of Neural Network 5.4.3 Neural Network Models 5.4.4 Rosenblatt’s Perceptron 5.4.5 Feedforward and Recurrent Networks 5.4.6 Back Propagation Algorithm 5.4.7 Forward Propagation 5.4.8 Algorithm 5.4.9 Recurrent Network 5.4.10 Examples of Neural Networks 5.4.10.1 AND Operation 5.4.10.2 OR Operation 5.4.10.3 XOR Operation 5.4.11 Key Components of an Artificial Neuron Network 5.4.12 Neural Network Training 5.4.13 Training Types 5.4.13.1 Supervised Training 5.4.13.2 Unsupervised Training 5.4.14 Learning Rates 5.4.15 Learning Laws 5.4.16 Restructured Power System 5.4.17 Advantages of Precise Forecasting of the Price 5.5 Conclusion References 6 Recent Advances in Wearable Antennas: A Survey 6.1 Introduction 6.2 Types of Antennas 6.2.1 Description of Wearable Antennas 6.2.1.1 Microstrip Patch Antenna 6.2.1.2 Substrate Integrated Waveguide Antenna 6.2.1.3 Planar Inverted-F Antenna 6.2.1.4 Monopole Antenna 6.2.1.5 Metasurface Loaded Antenna 6.3 Design of Wearable Antennas 6.3.1 Effect of Substrate and Ground Geometries on Antenna Design 6.3.1.1 Conducting Coating on Substrate 6.3.1.2 Ground Plane With Spiral Metamaterial Meandered Structure 6.3.1.3 Partial Ground Plane 6.3.2 Logo Antennas 6.3.3 Embroidered Antenna 6.3.4 Wearable Antenna Based on Electromagnetic Band Gap 6.3.5 Wearable Reconfigurable Antenna 6.4 Textile Antennas 6.5 Comparison of Wearable Antenna Designs 6.6 Fractal Antennas 6.6.1 Minkowski Fractal Geometries Using Wearable Electro-Textile Antennas 6.6.2 Antenna Design With Defected Semi-Elliptical Ground Plane 6.6.3 Double-Fractal Layer Wearable Antenna 6.6.4 Development of Embroidered Sierpinski Carpet Antenna 6.7 Future Challenges of Wearable Antenna Designs 6.8 Conclusion References 7 An Overview of IoT and Its Application With Machine Learning in Data Center 7.1 Introduction 7.1.1 6LoWPAN 7.1.2 Data Protocols 7.1.2.1 CoAP 7.1.2.2 MQTT 7.1.2.3 Rest APIs 7.1.3 IoT Components 7.1.3.1 Hardware 7.1.3.2 Middleware 7.1.3.3 Visualization 7.2 Data Center and Internet of Things 7.2.1 Modern Data Centers 7.2.2 Data Storage 7.2.3 Computing Process 7.2.3.1 Fog Computing 7.2.3.2 Edge Computing 7.2.3.3 Cloud Computing 7.2.3.4 Distributed Computing 7.2.3.5 Comparison of Cloud Computing and Fog Computing 7.3 Machine Learning Models and IoT 7.3.1 Classifications of Machine Learning Supported in IoT 7.3.1.1 Supervised Learning 7.3.1.2 Unsupervised Learning 7.3.1.3 Reinforcement Learning 7.3.1.4 Ensemble Learning 7.3.1.5 Neural Network 7.4 Challenges in Data Center and IoT 7.4.1 Major Challenges 7.5 Conclusion References 8 Impact of IoT to Meet Challenges in Drone Delivery System 8.1 Introduction 8.1.1 IoT Components 8.1.2 Main Division to Apply IoT in Aviation 8.1.3 Required Field of IoT in Aviation 8.2 Literature Survey 8.3 Smart Airport Architecture 8.4 Barriers to IoT Implementation 8.4.1 How is the Internet of Things Converting the Aviation Enterprise? 8.5 Current Technologies in Aviation Industry 8.5.1 Methodology or Research Design 8.6 IoT Adoption Challenges 8.6.1 Deployment of IoT Applications on Broad Scale Includes the Underlying Challenges 8.7 Transforming Airline Industry With Internet of Things 8.7.1 How the IoT Is Improving the Aviation Industry 8.7.2 Applications of AI in the Aviation Industry 8.8 Revolution of Change (Paradigm Shift) 8.9 The Following Diagram Shows the Design of the Application 8.10 Discussion, Limitations, Future Research, and Conclusion 8.10.1 Growth of Aviation IoT Industry 8.10.2 IoT Applications—Benefits 8.10.3 Operational Efficiency 8.10.4 Strategic Differentiation 8.10.5 New Revenue 8.11 Present and Future Scopes 8.11.1 Improving Passenger Experience 8.11.2 Safety 8.11.3 Management of Goods and Luggage 8.11.4 Saving 8.12 Conclusion References 9 IoT-Based Water Management System for a Healthy Life 9.1 Introduction 9.1.1 Human Activities as a Source of Pollutants 9.2 Water Management Using IoT 9.2.1 Water Quality Management Based on IoT Framework 9.3 IoT Characteristics and Measurement Parameters 9.4 Platforms and Configurations 9.5 Water Quality Measuring Sensors and Data Analysis 9.6 Wastewater and Storm Water Monitoring Using IoT 9.6.1 System Initialization 9.6.2 Capture and Storage of Information 9.6.3 Information Modeling 9.6.4 Visualization and Management of the Information 9.7 Sensing and Sampling of Water Treatment Using IoT References 10 Fuel Cost Optimization Using IoT in Air Travel 10.1 Introduction 10.1.1 Introduction to IoT 10.1.2 Processing IoT Data 10.1.3 Advantages of IoT 10.1.4 Disadvantages of IoT 10.1.5 IoT Standards 10.1.6 Lite Operating System (Lite OS) 10.1.7 Low Range Wide Area Network (LoRaWAN) 10.2 Emerging Frameworks in IoT 10.2.1 Amazon Web Service (AWS) 10.2.2 Azure 10.2.3 Brillo/Weave Statement 10.2.4 Calvin 10.3 Applications of IoT 10.3.1 Healthcare in IoT 10.3.2 Smart Construction and Smart Vehicles 10.3.3 IoT in Agriculture 10.3.4 IoT in Baggage Tracking 10.3.5 Luggage Logbook 10.3.6 Electrical Airline Logbook 10.4 IoT for Smart Airports 10.4.1 IoT in Smart Operation in Airline Industries 10.4.2 Fuel Emissions on Fly 10.4.3 Important Things in Findings 10.5 Related Work 10.6 Existing System and Analysis 10.6.1 Technology Used in the System 10.7 Proposed System 10.8 Components in Fuel Reduction 10.9 Conclusion 10.10 Future Enhancements References 11 Object Detection in IoT-Based Smart Refrigerators Using CNN 11.1 Introduction 11.2 Literature Survey 11.3 Materials and Methods 11.3.1 Image Processing 11.3.2 Product Sensing 11.3.3 Quality Detection 11.3.4 Android Application 11.4 Results and Discussion 11.5 Conclusion References 12 Effective Methodologies in Pharmacovigilance for Identifying Adverse Drug Reactions Using IoT 12.1 Introduction 12.2 Literature Review 12.3 Data Mining Tasks 12.3.1 Classification 12.3.2 Regression 12.3.3 Clustering 12.3.4 Summarization 12.3.5 Dependency Modeling 12.3.6 Association Rule Discovery 12.3.7 Outlier Detection 12.3.8 Prediction 12.4 Feature Selection Techniques in Data Mining 12.4.1 GAs for Feature Selection 12.4.2 GP for Feature Selection 12.4.3 PSO for Feature Selection 12.4.4 ACO for Feature Selection 12.5 Classification With Neural Predictive Classifier 12.5.1 Neural Predictive Classifier 12.5.2 MapReduce Function on Neural Class 12.6 Conclusions References 13 Impact of COVID-19 on IIoT 13.1 Introduction 13.1.1 The Use of IoT During COVID-19 13.1.2 Consumer IoT 13.1.3 Commercial IoT 13.1.4 Industrial Internet of Things (IIoT) 13.1.5 Infrastructure IoT 13.1.6 Role of IoT in COVID-19 Response 13.1.7 Telehealth Consultations 13.1.8 Digital Diagnostics 13.1.9 Remote Monitoring 13.1.10 Robot Assistance 13.2 The Benefits of Industrial IoT 13.2.1 How IIoT is Being Used 13.2.2 Remote Monitoring 13.2.3 Predictive Maintenance 13.3 The Challenges of Wide-Spread IIoT Implementation 13.3.1 Health and Safety Monitoring Will Accelerate Automation and Remote Monitoring 13.3.2 Integrating Sensor and Camera Data Improves Safety and Efficiency 13.3.3 IIoT-Supported Safety for Customers Reduces Liability for Businesses 13.3.4 Predictive Maintenance Will Deliver for Organizations That Do the Work 13.3.5 Building on the Lessons of 2020 13.4 Effects of COVID-19 on Industrial Manufacturing 13.4.1 New Challenges for Industrial Manufacturing 13.4.2 Smarter Manufacturing for Actionable Insights 13.4.3 A Promising Future for IIoT Adoption 13.5 Winners and Losers—The Impact on IoT/ Connected Applications and Digital Transformation due to COVID-19 Impact 13.6 The Impact of COVID-19 on IoT Applications 13.6.1 Decreased Interest in Consumer IoT Devices 13.6.2 Remote Asset Access Becomes Important 13.6.3 Digital Twins Help With Scenario Planning 13.6.4 New Uses for Drones 13.6.5 Specific IoT Health Applications Surge 13.6.6 Track and Trace Solutions Get Used More Extensively 13.6.7 Smart City Data Platforms Become Key 13.7 The Impact of COVID-19 on Technology in General 13.7.1 Ongoing Projects Are Paused 13.7.2 Some Enterprise Technologies Take Off 13.7.3 Declining Demand for New Projects/Devices/Services 13.7.4 Many Digitalization Initiatives Get Accelerated or Intensified 13.7.5 The Digital Divide Widens 13.8 The Impact of COVID-19 on Specific IoT Technologies 13.8.1 IoT Networks Largely Unaffected 13.8.2 Technology Roadmaps Get Delayed 13.9 Coronavirus With IoT, Can Coronavirus Be Restrained? 13.10 The Potential of IoT in Coronavirus Like Disease Control 13.11 Conclusion References 14 A Comprehensive Composite of Smart Ambulance Booking and Tracking Systems Using IoT for Digital Services 14.1 Introduction 14.2 Literature Review 14.3 Design of Smart Ambulance Booking System Through App 14.4 Smart Ambulance Booking 14.4.1 Welcome Page 14.4.2 Sign Up 14.4.3 Home Page 14.4.4 Ambulance Section 14.4.5 Ambulance Selection Page 14.4.6 Confirmation of Booking and Tracking 14.5 Result and Discussion 14.5.1 How It Works? 14.6 Conclusion 14.7 Future Scope References 15 An Efficient Elderly Disease Prediction and Privacy Preservation Using Internet of Things 15.1 Introduction 15.2 Literature Survey 15.3 Problem Statement 15.4 Proposed Methodology 15.4.1 Design a Smart Wearable Device 15.4.2 Normalization 15.4.3 Feature Extraction 15.4.4 Classification 15.4.5 Polynomial HMAC Algorithm 15.5 Result and Discussion 15.5.1 Accuracy 15.5.2 Positive Predictive Value 15.5.3 Sensitivity 15.5.4 Specificity 15.5.5 False Out 15.5.6 False Discovery Rate 15.5.7 Miss Rate 15.5.8 F-Score 15.6 Conclusion References Index Also of Interest