دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فیزیک کوانتوم ویرایش: 4 نویسندگان: James Dodd. Ben Gripaios سری: ISBN (شابک) : 9781108727402, 2019042616 ناشر: Cambridge University Press سال نشر: 2020 تعداد صفحات: 333 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب The ideas of particle physics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ایده های فیزیک ذرات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مقدمهای جامع بر فیزیک ذرات است و شکاف بین کتابهای درسی سنتی در این زمینه و گزارشهای رایجی را که دانش پیشزمینه کمی دارند، پر میکند. این نسخه چهارم به طور کامل بازبینی شده است، شامل جدیدترین ایده ها و اکتشافات، و آخرین راه های تحقیق. توسعه موضوع از مبانی مکانیک کوانتومی و نسبیت، از طریق فرمولبندی نظریههای میدان کوانتومی تا مدل استاندارد دنبال میشود. تحقیقات در حال حاضر با اولین نشانه های فیزیک فراتر از مدل استاندارد و با فرمول بندی نظریه ریسمان مدرن که قصد دارد برای اولین بار یک نظریه کوانتومی گرانش را شامل شود، ادامه دارد. این کتاب برای هر کسی با پیشینه در علوم فیزیکی که مایل به یادگیری در مورد فیزیک ذرات هستند در نظر گرفته شده است. همچنین برای دانشجویان فیزیک که مایل به کسب یک دید کلی مقدماتی از موضوع هستند، ارزشمند است.
This book is a comprehensive introduction to particle physics, bridging the gap between traditional textbooks on the subject and popular accounts that assume little background knowledge. This fourth edition is fully revised, including the most recent ideas and discoveries, and the latest avenues of research. The development of the subject is traced from the foundations of quantum mechanics and relativity, through the formulation of quantum field theories, to the standard model. Research now continues with the first signs of physics beyond the standard model and with the formulation of modern string theory which aims to include a quantum theory of gravity for the first time. This book is intended for anyone with a background in physical sciences who wishes to learn about particle physics. It is also valuable to students of physics wishing to gain an introductory overview of the subject.
Contents Preface Part I. Introduction 1. Matter and Light 1.1 Introduction 1.2 The Nature of Matter 1.3 Atomic Radiations 1.4 Rutherford’s Atom 1.5 Two Problems 2. Special Relativity 2.1 Introduction 2.2 Galilean Relativity 2.3 The Origins of Special Relativity 2.4 The Lorentz–Fitzgerald Contraction 2.5 The Special Theory of Relativity 2.6 Mass Momentum and Energy 2.7 The Physical Effects of Special Relativity 2.8 Using Relativity 3. Quantum Mechanics 3.1 Introduction 3.2 Planck’s Hypothesis 3.3 Einstein’s Explanation of the Photoelectric Effect 3.4 Bohr’s Atom 3.5 De Broglie’s Electron Waves 3.6 Schrödinger’s Wavefunction 3.7 Heisenberg’s Mechanics and the Uncertainty Principle 3.8 The Interpretation of the Wavefunction ψ 3.9 Electron Spin 3.10 The Pauli Exclusion Principle 4. Relativistic Quantum Theory 4.1 Introduction 4.2 The Dirac Equation 4.3 Antiparticles 4.4 Quantum Field Theory (QFT) 4.5 Interacting Fields 4.6 Perturbation Theory 4.7 Virtual Processes 4.8 Renormalisation 4.9 The Quantum Vacuum 4.10 Quantum Electrodynamics 4.11 Postscript Part II. Basic Particle Physics 5. The Fundamental Forces 5.1 Introduction 5.2 Gravity 5.3 Electromagnetism 5.4 The Strong Nuclear Force 5.5 The Weak Nuclear Force 6. Symmetry in the Microworld 6.1 Introduction 6.2 Space–Time Symmetries 6.3 Discrete Symmetries 6.4 The CPT Theorem 6.5 Dynamical Symmetries 6.6 Internal Symmetries 6.7 Broken Symmetries 7. Mesons 7.1 Introduction 7.2 Yukawa’s Proposal 7.3 The Muon 7.4 The Real Pion 7.5 Terminology 7.6 Isotopic Spin 8. Strange Particles 8.1 Introduction 8.2 Associated Production 8.3 The Kaons 8.4 The Hyperons 8.5 Summary Part III. Strong Interaction Physics 9. Resonance Particles 9.1 Introduction 9.2 Resonance Particle Experiments 10. SU(3) and Quarks 10.1 Introduction 10.2 Internal Symmetry 10.3 Quarks Part IV. Weak Interaction Physics I 11. The Violation of Parity 11.1 Introduction 11.2 β Decay of Cobalt 11.3 Absolute-handedness and CP Invariance 12. Fermi’s Theory of the Weak Interactions 12.1 Introduction 12.2 Fermi’s Theory of β Decay 12.3 Spin, Helicity and Chirality 12.4 The Polarisation of β-decay Electrons 12.5 Neutrino Helicity 12.6 In Conclusion 13. Two Neutrinos 13.1 Introduction 13.2 A Problem in the Weak Interactions 13.3 The Two-neutrino Experiment 14. Neutral Kaons and CP Violation 14.1 Introduction 14.2 What is a Neutral Kaon? 14.3 Violation of CP Symmetry Part V. Weak Interaction Physics II 15. The Current–Current Theory of the Weak Interactions 15.1 Introduction 15.2 The Lepton Current 15.3 Higher-order Interactions 16. An Example Leptonic Process: Electron-neutrino Scattering 16.1 Introduction 16.2 The Role of the Weak Force in Astrophysics 17. The Weak Interactions of Hadrons 17.1 Introduction 17.2 The Hadronic Current 17.3 The Hadron Current and Quarks 18. The W Boson 18.1 Introduction 18.2 The W Boson 18.3 Observing the W Boson Part VI. Gauge Theory of the Weak Interactions 19. Motivation for the Theory 19.1 Introduction 19.2 Problems with the W Bosons 20. Gauge Theory 20.1 Introduction 20.2 The Formulation of QED 20.3 Generalised Gauge Invariance 20.4 Gauge Invariance and the Weak Interactions 21. Spontaneous Symmetry Breaking 21.1 Introduction 21.2 Spontaneous Breaking of Global Symmetry 21.3 Spontaneous Breaking of Local Symmetry – the Higgs Mechanism 22. The Glashow–Weinberg–Salam Model 22.1 Introduction 22.2 Formulation 22.3 Reprise 22.4 An Academic Postscript - Renormalisability 23. Consequences of the Model 23.1 Introduction 23.2 Neutral Currents 23.3 The Incorporation of Hadrons - Charm 23.4 Parity-violating Tests of the Glashow–Weinberg-Salam Model 24. The Hunt for the W^±, Z^0 Bosons 24.1 Introduction 24.2 The CERN p¯p Collider Experiment 24.3 Detecting the Bosons 24.4 Epilogue Part VII. Deep Inelastic Scattering 25. Deep Inelastic Processes 25.1 Introduction 25.2 Two Key Ideas 26. Electron–Nucleon Scattering 26.1 Introduction 26.2 The Scaling Hypothesis 26.3 Exploring the Structure Functions 27. The Deep Inelastic Microscope 27.1 Introduction 27.2 Free Quarks and Strong Forces 28. Neutrino–Nucleon 28.1 Introduction 28.2 Neutrino Experiments 28.3 The Cross-section 28.4 The Scaling Hypothesis 29. The Quark Model of the Structure Functions 29.1 Introduction 29.2 Electromagnetic Structure Functions 29.3 Weak Interaction Structure Functions 29.4 Electron and Neutrino Structure Functions Compared 29.5 Sum Rules 29.6 Summary Part VIII. Quantum Chromodynamics - the Theory of Quarks 30. Coloured Quarks 30.1 Introduction 30.2 Colour 30.3 Invisible Colour 31. Colour Gauge Theory 31.1 Introduction 31.2 The Formulation of QCD 32. Asymptotic Freedom 32.1 Introduction 32.2 Violations of Scaling 33. Quark Confinement 33.1 Introduction 33.2 Quark Forces – Hadron Forces Part IX. Electron–Positron Collisions 34. Probing the Vacuum 34.1 Introduction 34.2 The Experiments 34.3 The Basic Reactions 35. Quarks and Charm 35.1 Introduction 35.2 The Quark Picture 35.3 The Advent of Charm 35.4 Psichology 35.5 Charmed Particles 36. Another Generation 36.1 Introduction 36.2 The Upsilon 36.3 The Tau Heavy Lepton 36.4 Completing the Third Generation Part X. The Standard Model 37. The Model in Summary 37.1 Introduction 37.2 Summary of the Standard Model 37.3 Consistency of the Standard Model 38. Precision Tests of the Model 38.1 Introduction 38.2 Precision Tests of the Gauge Interactions 39. Flavour Mixing and CP Violation 39.1 Introduction 39.2 CP Violation in the Standard Model 39.3 CP-Violation Experiments 39.4 B-Physics Experiments 39.5 K-Meson Experiments 40. The Large Hadron Collider 40.1 Introduction 40.2 Historical Constraints on the Higgs Boson Mass 40.3 The Large Hadron Collider Concept 40.4 Construction Timeline 40.5 The LHC Experiments 40.6 CERN and the World Wide Web 41. Discovery and Properties of the Higgs Boson 41.1 Introduction 41.2 Decays of the Higgs Boson 41.3 Production of the Higgs Boson 41.4 Discovery of the Higgs Boson 41.5 Properties of the Higgs Boson 41.6 The Future of Higgs Physics Part XI. Beyond the Standard Model 42. Reasons to Go Beyond 42.1 Introduction 43. Neutrino Masses and Mixing 43.1 Introduction 43.2 The Solar Neutrino Problem 43.3 Neutrino Oscillations 43.4 Neutrino Oscillation Experiments 43.5 Solar Experiments 43.6 Atmospheric Experiments 43.7 Short Baseline Experiments 43.8 Theory of Neutrino Masses and Mixings 43.9 A Minimal Extension of the Standard Model 44. Grand Unification 44.1 Introduction 45. Supersymmetry 45.1 Introduction 45.2 Miracles of SUSY 45.3 SUSY and the Real World 45.4 The Hierarchy Problem 45.5 SUSY as a Resolution of the Hierarchy Problem 45.6 Supersymmetrising the Standard Model 45.7 Supersymmetry Breaking and MSSM 45.8 Another Prediction of SUSY 45.9 Supersymmetry and Dark Matter 45.10 Supersymmetry and the LHC 46. Composite Higgs Models 46.1 Introduction 46.2 A World without the Higgs 46.3 Technicolour 46.4 Composite Higgs 46.5 Composite Higgs at Colliders 47. Axions and the Strong CP Problem 47.1 The Strong CP Problem 47.2 The Axion 47.3 The Axion Window Part XII. Particle Physics and Cosmology 48. The Big Bang and Inflation 48.1 Introduction 48.2 Big Bang Cosmology 48.3 Beyond the Big Bang 48.4 Inflation 48.5 Theories of Inflation 49. The Cosmic Microwave Background 49.1 Introduction 49.2 Observations of the CMB Anisotropy 49.3 Physics of the CMB Anisotropy 49.4 CMB Polarisation 50. The Matter–Antimatter Asymmetry 50.1 Introduction 50.2 GUT Baryogenesis 50.3 Baryogenesis via Leptogenesis 50.4 Electroweak Baryogenesis 51. Dark Matter 51.1 Introduction 51.2 Gravitational Evidence for Dark Matter 51.3 Dark Matter Candidates 51.4 Searches for Dark Matter 52. Dark Energy 52.1 Introduction 52.2 Einstein’s Cosmological Constant 52.3 Supernovae and Dark Energy 52.4 The Cosmological Hierarchy Problem 52.5 The ‘Why Now?’ Problem 52.6 The Anthropic Principle 52.7 Summary Part XIII. Gravity and Gravitational Waves 53. From General Relativity to Gravitational Waves 53.1 Introduction 53.2 Hulse–Taylor Variation in Binary Pulsar Periodicity 53.3 Modern Astrophysics 54. The Discovery of Gravitational Waves 54.1 Introduction 54.2 LIGO 54.3 The Detection of GW150914 54.4 Subsequent Events 55. Gravitational-wave and Multi-messenger Astronomy 55.1 Introduction 55.2 Gravitational-wave Astronomy 55.3 GW170817 – a Binary Neutron Star Merger 56. The Future: Super LIGO and LISA Part XIV. String Theory 57. Origins – the Hadronic String 57.1 The Success of QFT 57.2 The Problem of Gravity 57.3 Strings versus Particles 57.4 The Hadronic String 58. String Theory to M-theory 58.1 The Search for a Consistent String Theory 58.2 String Theories Contain More Than String 59. The AdS–CFT Correspondence 59.1 The Miracle of Duality 59.2 The String Theory Side 59.3 The Quantum Field Theory Side 59.4 The AdS–CFT Dictionary 59.5 Applications of AdS–CFT 60. Consequences of the Theory 60.1 The Richness of String and M-theory 60.2 Back to the Anthropic Principle 60.3 A Theory in Search of Experiment 60.4 Conclusion Part XV. The Future: To Boldly Go! 61. Accelerators, Observatories and Other Experiments 61.1 Accelerators 61.2 Observatories and Other Experiments 62 Known Unknowns 62.1 The Current In-tray 63. Glittering Prizes 63.1 The Class of 1984 64. Unknown Unknowns: It Must Be Beautiful 64.1 The Challenges of Quantum Gravity 64.2 The Beautiful Equations Appendices A. Units and Constants B. Glossary C. List of Symbols D. Bibliography E. Elementary Particle Data Name Index Subject Index