دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [Third ed.] نویسندگان: David McConnell, Katharine Owens, Catharine Knight, David Nathan Steer سری: ISBN (شابک) : 9780073524108, 1259094995 ناشر: Mcgraw-Hill Education سال نشر: 2015 تعداد صفحات: [561] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 152 Mb
در صورت تبدیل فایل کتاب The good Earth : introduction to earth science به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب زمین خوب: مقدمه ای بر علم زمین نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
The Good Earth محصول همکاری بین دقت محتوای ارائه شده توسط متخصصان علوم زمین (مک کانل، استیر) و نتایج تحقیقات در مورد یادگیری است. زمین خوب به صراحت طراحی شده است تا با یادگیری فعال و مبتنی بر تحقیق در کلاس درس کالج سازگار باشد. عناصر ساختاری این متن به مربی این امکان را می دهد که این روش های آموزشی دانش آموز محور را در درس علوم زمین خود بگنجاند. نویسندگان محتوای کتاب و آموزش را در کلاسهای بزرگ علوم زمین برای افراد غیررشتهای که عمدتاً با دانشآموزان سال اول پرجمعیت هستند، آزمایش کردهاند. تجربیات آنها نشان میدهد که مواد و روشهای موجود در The Good Earth میتواند یادگیری دانشآموزان را بهبود بخشد، حضور روزانه را افزایش دهد، فرسایش را کاهش دهد و شور و شوق دانشآموزان را در مقایسه با کلاسهایی که با فرمت سخنرانی سنتی تدریس میشوند، افزایش دهد. نویسندگان بر سه موضوع علمی در سراسر متن تاکید کرده اند: 1) سواد علمی. ii) علم زمین و تجربه انسانی. و، iii) علم تغییرات جهانی. بحث از روش های علمی در سراسر متن بافته شده است. آنها نمونه های متعددی از تعامل انسان با زمین گنجانده اند که می تواند به عنوان نقطه ورود دانش آموزان برای درک ماهیت علم باشد. تغییر جهانی موضوعی است که در بسیاری از تحقیقات فعلی علوم زمین مشهود است، بنابراین نویسندگان ما از تغییر جهانی به عنوان موضوع محتوا در سراسر کتاب استفاده کردهاند.
The Good Earth is the product of collaboration between the content rigor provided by Earth Science specialists (McConnell, Steer) and the results of research on learning. The Good Earth has been explicitly designed to be compatible with inquiry-based, active learning in the college classroom. The structural elements of this text will allow the instructor to incorporate these student-centered teaching methods into their Earth Science course. The authors have tested the book’s content and pedagogy in large Earth Science classes for non-majors that are populated with mostly freshmen. Their experiences show that the materials and methods in The Good Earth can improve students’ learning, increase daily attendance, reduce attrition, and increase students’ enthusiasm in comparison with classes taught following a traditional lecture format. The authors have chosen to emphasize three scientific themes throughout the text: i) scientific literacy; ii) Earth Science and the human experience; and, iii) the science of global change. The discussion of scientific methods is woven into the text throughout. They have included numerous examples of human interaction with the Earth that can serve as entry points for students to appreciate the nature of science. Global change is a theme that is evident in much current Earth Science research so our authors have used global change as a content theme throughout the book.
Cover Title Copyright Contents Preface About the Authors chapter 1 Introduction to Earth Science 1.1 Earth Science and the Earth System Your Introduction to Earth Science 1.2 The Scope of (Earth) Science Earth System Basics Science and Discovery Tools Used by Earth Scientists 1.3 Doing Science From Observation to Hypothesis Inductive and Deductive Reasoning From Hypothesis to Theory The Characteristics of Good Science Science in Full View: The Hutchinson Gas Explosions An Example of Good Science: The Alvarez Hypothesis Limitations of Science The Characteristics of Bad Science An Example of Bad Science: Prediction of a Midcontinent Earthquake 1.4 Science and Society The Role of Earth Science Protecting Against Natural Hazards Finding and Sustaining Earth's Resources Protecting the Health of the Environment Ensuring the Future of Human Life The Anthropocene: A New Time on Earth? THE BIG PICTURE chapter 2 Earth in Space 2.1 Old Ideas, New Ideas 2.2 Origin of the Universe Determining the Age and Size of the Universe The Big Bang Theory 2.3 Stars and Planets How Stars Formed How Planets Formed 2.4 Our Solar System Characteristics of the Sun Eight, Nine, or Ten Planets? Types of Planets Chapter Snapshot: The Solar System 2.5 Earth, the Sun, and the Seasons Distribution of Solar Radiation 2.6 The Unique Composition of Earth Core, Mantle, and Crust Why Is There Life on Earth? The Big Picture chapter 3 Near-Earth Objects 3.1 Chevy Asteroid The Potential for NEO Impacts 3.2 Characteristics of Near-Earth Objects Asteroids and Meteorites Comets 3.3 Impact Features Crater Characteristics 3.4 Impact Hazards An Impact Event Chapter Snapshot: NEO Impact with Earth 3.5 Beware of Flying Rocks Predicting and Preventing Impact Events THE BIG PICTURE chapter 4 Plate Tectonics 4.1 Science and Santa Claus Hey, Good Lookin' 4.2 Continental Drift Wegener's Theory 4.3 Evidence from the Seafloor Seafloor Topography Age of the Ocean Floor Heat Flow, Volcanoes, and Earthquakes Seafloor Spreading Theory Paleomagnetism 4.4 Plate Tectonics Key Layers and Processes The Process of Plate Tectonics Chapter Snapshot: Plates of the World Do Other Planets Have Plate Tectonics? 4.5 Plate Boundaries Divergent Plate Boundaries Convergent Plate Boundaries Transform Plate Boundaries Plate Tectonics and Climate The Big Picture chapter 5 Earthquakes 5.1 Experiencing an Earthquake Firsthand 5.2 The Science of Ghost Forests and Megathrust Earthquakes Evidence from Trees Evidence from Plate Tectonics Linking the Evidence to the Orphan Tsunami What These Findings Mean for the Future 5.3 Faults, Earthquakes, and Plate Tectonics Common Features of Faults and Earthquakes Directions of Fault Movement Amounts of Fault Movement Stress and Deformation Where to Expect Earthquakes 5.4 Seismic Waves and Earthquake Detection Types of Seismic Waves Determining Earthquake Location and Magnitude Seismic Waves and Earthquake Warning Systems 5.5 Measurement of Earthquakes Earthquake Magnitude Earthquake Intensity (Modified Mercalli Scale) 5.6 Earthquake Hazards Ground Shaking Aftershocks Landslides Elevation Changes Liquefaction Tsunami Chapter Snapshot: 2004 Tsunami THE BIG PICTURE chapter 6 Volcanoes and Other Mountains 6.1 The Volcano Commandos The Speedy Lavas of Nyiragongo 6.2 Magma Viscosity Viscosity and Heat Viscosity and Chemical Composition Viscosity and Volcanic Eruptions 6.3 Magma Sources and Magma Composition 6.4 The Mount St. Helens Eruption Prior Activity The May 18 Eruption How Does Mount St. Helens Compare to Other Eruptions? 6.5 Products of Volcanic Eruptions Airborne Elements Chapter Snapshot: Potential Features of Volcanic Eruption Surface Effects 6.6 Volcanoes and Volcanic Landforms Three Classes of Volcanic Cones Other Volcanic Landforms 6.7 Mountains: Why Are They There? Mountains and Plate Tectonics 6.8 The Rise and Fall of Mountains and Temperatures Mountains and Climate THE BIG PICTURE chapter 7 Rocks and Minerals 7.1 Earth Scientists: Nature Detectives Where Do Bricks Come From? 7.2 Elements and Atoms: The Basic Building Blocks Elements Atoms 7.3 Minerals Mineral Characteristics 7.4 Igneous Rocks The Classification of Igneous Rocks Chapter Snapshot: Origin of Rocks 7.5 Sedimentary Rocks Clastic Sedimentary Rocks Chemical Sedimentary Rocks Biochemical Sedimentary Rocks Sedimentary Rocks and Fossil Fuels 7.6 Metamorphic Rocks Contact Metamorphism Regional Metamorphism 7.7 The Rock Cycle and Mineral Resources The Rock Cycle Mineral Resources THE BIG PICTURE chapter 8 Geologic Time 8.1 Thinking About Time 8.2 The History of (Relative) Time Relative Time Chapter Snapshot: Geological History of the Grand Canyon Fossils and Chronology 8.3 Geologic Time Evolution of Early Earth The Geologic Timescale Mass Extinctions 8.4 Numerical Time Radioactive Decay Half-Lives Applying Both Relative and Numerical Time 8.5 Rates of Change Catastrophism Uniformitarianism The Big Picture chapter 9 Weathering and Soils 9.1 The Dirt on Weathering Weathering of Cultural Sites Where Does Dirt Come From? 9.2 Physical Weathering Unloading Wedging 9.3 Chemical Weathering Dissolution Chapter Snapshot: Weathering Hydrolysis Oxidation Linking Chemical and Physical Weathering Processes 9.4 Biological Weathering and Decay Macroscopic Processes Microscopic Processes 9.5 Weathering Rates Rock Composition Rock Properties Climate Weathering at World Heritage Sites 9.6 Soils: An Introduction Soil-Forming Factors Soil Types 9.7 Soil Erosion and Conservation Erosion by Water and Wind Effects of Land Use Practices on Erosion Soil Conservation THE BIG PICTURE chapter 10 Landslides and Slope Failure 10.1 Mass Wasting: The Human Impact The Phenomenon of Mass Wasting 10.2 Factors Influencing Slope Failure Slope Angle The Influence of Gravity The Effects of Water Case Study: Slope Failure in Venezuela Methods of Stabilizing Slopes 10.3 Slope Failure Processes Rockfalls Rockslides Chapter Snapshot: Landslides Slumps Debris Flows and Mudflows Creep THE BIG PICTURE chapter 11 Streams and Floods 11.1 Humans and Rivers The Nile River: An Example of Stream Impact Stream Management 11.2 The Hydrologic Cycle The Origin of Streams 11.3 Drainage Networks and Patterns The Drainage Basin or Watershed Evolution of Stream Systems Drainage Patterns 11.4 Factors Affecting Stream Flow Stream Gradient Stream Velocity Stream Discharge 11.5 The Work of Streams Erosion Transport Deposition Chapter Snapshot: Channel Migration in the Mamoré River 11.6 Floods Causes of Floods Estimating Floods: Measuring Stream Discharge and Stream Stage Determining Recurrence Interval 11.7 Flood Control Approaches to Flood Control THE BIG PICTURE chapter 12 Groundwater and Wetlands 12.1 Meet Your Drinking Water Where Drinking Water Comes From A Case of Groundwater Contamination: Woburn, Massachusetts 12.2 Holes in Earth Materials Porosity Permeability 12.3 Groundwater Systems Aquifers Natural Groundwater Budget: Inflow Versus Outflow Consequences of Human Actions Chapter Snapshot: Groundwater 12.4 A Case Study: The High Plains Aquifer 12.5 Groundwater Quality Drinking Yourself to Death, Naturally Do-lt-Yourself Groundwater Contamination 12.6 Introduction to Wetlands Characteristics of Wetlands Case Study: The Florida Everglades THE BIG PICTURE chapter 13 Oceans and Coastlines 13.1 Our Changing Oceans The Dynamic Nature of Oceans and Coastlines 13.2 Ocean Basins Sea Level Bathymetry of the Ocean Floor A Walk Across the Ocean Floor: The Four Major Depth Zones 13.3 Ocean Waters Water Chemistry Water Temperature Water's Density, Temperature, and Depth 13.4 Oceanic Circulation Ocean Currents Coriolis Effect Continents and Oceanic Circulation Thermohaline Circulation The El Nino/Southern Oscillation (ENSO): An Example of Earth as a System Chapter Snapshot: Global Circulation and Topography 13.5 Tides Why Tides Occur Tidal Patterns 13.6 Wave Action and Coastal Processes Wave Motion in the Open Ocean Effect of the Wind on Ocean Waves Wave Motion Close to Shore Wave Energy 13.7 Shoreline Features The Changing of Coastal Landforms The Sediment Budget 13.8 Shoreline Protection Erosion Prevention Strategies Erosion Adjustment Strategies THE BIG PICTURE chapter 14 The Atmosphere 14.1 Science and Skydiving 14.2 Air Evolves An Atmosphere Evolves 14.3 Structure and Processes of the Atmosphere Heat Versus Temperature The Four Layers of the Atmosphere 14.4 Solar Radiation and the Atmosphere Solar Radiation and the Electromagnetic Spectrum Earth's Energy Budget Chapter Snapshot: The Earth's Albedo 14.5 The Role of Water in the Atmosphere Three States of Water Changing States of Water Humidity 14.6 Air Pressure, Condensation, and Precipitation Air Pressure and Air Density Effects of Air Pressure on Temperature Adiabatic Lapse Rates Condensation and Cloud Formation Precipitation 14.7 Clouds and Frontal Systems Cloud Classification Cloud Formation Mechanisms 14.8 Winds The Relationship Between Air Pressure and Wind Regional Pressure Gradient Coriolis Effect Friction Cyclones and Anticyclones Wind Energy THE BIG PICTURE chapter 15 Weather Systems 15.1 The Weather Around Us Facts About Severe Weather 15.2 The Science of Weather: From Folklore to Forecasting The First Meteorologists Communications Developments Weather Technology Today 15.3 Air Masses Source Areas Types of Air Masses Modification of Air Masses 15.4 Midlatitude Cyclones and Frontal Systems Cold Fronts Warm Fronts Occluded Fronts 15.5 Severe Weather: Thunderstorms and Tornadoes Thunderstorms Tornadoes 15.6 Severe Weather: Hurricanes Building a Hurricane Chapter Snapshot: Hurricane Anatomy Looking to the Future The Big Picture chapter 16 Earth's Climate System 16.1 Want Ice with That? Climate Change and the Polar Bear Diet The Consequences of Arctic Warming 16.2 Global Air Circulation Chapter Snapshot: Climate Data The Nonrotating Earth Model The Rotating Earth Reality 16.3 Global Climate Regions Köppen-Geiger Classification System Climate and the Biosphere Energy and the Biosphere 16.4 Extreme Climate Environments Cold Climates Hot Deserts 16.5 Records of Climate Change Weather Records from Instruments Cultural Records Short-Term Climate Trends: Annual Cycles Long-Term Climate Trends: Abrupt Change and Millennial Cycles Interpreting the Climate Record Intervals and Rates of Climate Change 16.6 Natural Causes of Climate Change Distribution of the Continents Oceanic Circulation Patterns Variations in Earth's Orbit The Big Picture chapter 17 Global Change 17.1 Alternative Climates, Alternative Choices 17.2. Ozone and the Stratosphere The Nature of Ozone Natural Variations in Ozone Concentrations 17.3 CFCs and Ozone Depletion The Nature of CFCs Reductions in Ozone Concentrations Why Does Ozone Become Depleted over the South Pole? Our Ozone Future 17.4 Greenhouse Gases and Global Change The Global Carbon Cycle Carbon Produced by Human Activity Greenhouse Gas Emissions Chapter Snapshot: Carbon Cycle 17.5 Modeling Global Climate Change Forcings and Feedbacks Climate Models 17.6 A Warmer World Effects of Warmer Temperatures 17.7 What Can Be Done? International Agreements to Improve the Environment Reducing Greenhouse Gas Emissions What Else Can Be Done? The Big Picture Appendix A: Conversion Factors Appendix B: The Periodic Table Appendix C: Answers to Selected Checkpoint Questions Glossary A B C D E F G H I J K L M N O P Q R S T U V W Y Credits Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z