دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Sarfaraz K. Niazi
سری:
ISBN (شابک) : 0367705648, 9780367705640
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 568
[621]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 115 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب The Future of Pharmaceuticals: A Nonlinear Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آینده داروسازی: یک تحلیل غیرخطی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
آینده داروسازی: یک تحلیل غیرخطی فرصتی را برای درک غیرخطی بودن سیستم های بیولوژیکی و کاربرد آن در حوزه های مختلف علم، به ویژه علوم دارویی، فراهم می کند. این کتاب برای متخصصان صنایع داروسازی، دانشگاه و سیاست مفید خواهد بود.
The Future of Pharmaceuticals: A Nonlinear Analysis provides an opportunity to understand the non-linearity of biological systems and its application in various areas of science, primarily pharmaceutical sciences. This book will benefit professionals in pharmaceutical industries, academia, and policy.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface Acknowledgments Author List of Important Terminology Chapter 1 Understanding Nonlinearity 1.1 Background 1.2 Predictions 1.2.1 Examples 1.3 Modeling Systems 1.3.1 Bayes’ Theorem 1.3.1.1 Phases of Paradigm Shift 1.3.2 Future Shifts 1.4 Conclusion Additional Reading Chapter 2 The Evolution of Pharmaceuticals 2.1 Background 2.2 The Pre-Historical Era 2.3 The New World Era 2.4 The Regulatory Era 2.5 The Legal Era 2.6 The Gene Era 2.6.1 The Biological Medicine Era 2.6.2 Nobel Prizes 2.7 The Future Era 2.8 New Entities 2.8.1 A Special Case 2.9 Conclusion 2.10 Appendix: New Molecular Entities Approved by the FDA 2011–2020 Additional Reading Chapter 3 Artificial Intelligence 3.1 Background 3.2 Bioinformatics 3.3 Artificial Intelligence 3.4 Deep Learning Architecture 3.4.1 Graph Representation Learning 3.5 Repurposing 3.6 Data and Model Harmonization 3.7 Drug Discovery and Development 3.7.1 Stepwise Approach 3.7.2 Application Types 3.7.3 An Example of AI Application 3.8 AI Tools 3.9 Conclusion Additional Reading Chapter 4 Drug Discovery Trends 4.1 Background 4.2 High-Throughput Screening (HTS) 4.2.1 Phenotypic Screening 4.2.2 Modeling 4.2.3 Screening Using Fragments (FBS) 4.2.4 Ligandomics 4.2.5 Gene-Based Testing 4.2.6 Target Identification 4.2.6.1 Hit Identification 4.2.6.2 Hit to Lead 4.2.6.3 Target Validation and Efficacy 4.2.6.4 Cell-Based Models 4.2.6.5 In Vivo Testing 4.3 Structural Biology 4.4 Hit Optimization 4.4.1 PK–PD Relationship 4.5 Chemistry and Formulation 4.5.1 Lipinski’s Rule of Five (RO5) 4.6 Safety Testing 4.6.1 Animal Models 4.6.2 Replacing Animal Testing 4.7 Synthetic Biology 4.8 Libraries 4.8.1 DNA Libraries 4.9 Microphysiometry 4.9.1 Microfluidics 4.9.2 Organs-on-a-Chip (OOC) 4.9.3 Brain-on-a-Chip 4.9.4 Lung-on-a-Chip 4.9.5 Heart-on-a-Chip 4.9.6 Kidney-on-a-Chip 4.9.7 Nephron-on-a-Chip 4.9.8 Vessel-on-a-Chip 4.9.9 Skin-on-a-Chip 4.9.10 Human-on-a-Chip 4.10 Clinical Trials 4.10.1 Biomarkers 4.10.1.1 BEST 4.11 Exploratory IND 4.12 Repurposing 4.13 Orphan Drugs 4.14 Conclusion Additional Reading Chapter 5 Drug Development Assays 5.1 Background 5.1.1 Assay Optimization 5.2 Assay Development and Validation 5.2.1 Pre-Study Validation 5.2.2 In-Study Validation 5.2.3 Cross-Validation 5.2.4 Critical Path 5.3 Receptor Binding Assays in HTS 5.3.1 Scintillation Proximity Assays (SPA) 5.3.2 Filtration Assays 5.4 In Vitro Biochemical Assays 5.4.1 Definitions 5.4.2 Signs of Enzymatic Contamination 5.4.3 Solutions for Enzymatic Contamination 5.4.4 Batch Testing 5.4.4.1 Identity and Mass Purity 5.4.4.2 Methods for Confirming Identity and Mass Purity 5.4.4.3 Protein Stain of SDS-PAGE 5.4.4.4 Western Blot with the Specific Antibody 5.4.4.5 Analytical Gel Filtration 5.4.4.6 Reversed-Phase HPLC 5.4.4.7 Mass Spectrometry 5.4.4.8 Whole Mass for Protein 5.4.4.9 Peptide Mass Finger Printing 5.4.4.10 Edman Sequencing 5.4.4.11 Crude Enzyme Preparations 5.4.4.12 Commercial Enzymes 5.4.4.13 Co-Purification of Contaminating Enzymes 5.4.4.14 Mock Parallel Purification 5.4.4.15 Reversal of Enzyme Activity 5.4.5 Detecting Enzyme Impurities 5.4.5.1 Consequences of Substrate Selectivity 5.4.5.2 Substrate Km 5.4.5.3 Enzyme Concentration 5.4.5.4 Format Selection 5.4.6 Validating Enzymatic Purity 5.4.6.1 Inhibitor-Based Studies 5.4.6.2 IC50 Value 5.4.6.3 Hill slope 5.4.7 Substrate-Based Studies 5.4.7.1 Substrate Km Determination 5.4.7.2 Substrate Selectivity Studies 5.4.7.3 Comparison Studies 5.4.7.4 Enzyme Source 5.4.7.5 Format Comparison 5.5 Enzymatic Assays for HTS 5.5.1 Basic Concept 5.5.1.1 Initial Velocity 5.5.2 Reagents and Method Development 5.5.2.1 Detection System Linearity 5.5.2.2 Enzyme Reaction Progress Curve 5.5.2.3 Measuring the Initial Velocity of an Enzyme Reaction 5.5.2.4 Measurement of Km and Vmax 5.5.2.5 What Does the Km Mean? 5.5.2.6 How to Measure Km 5.5.2.7 Determination of IC50 for Inhibitors 5.5.2.8 Optimization Experiments 5.6 ELISA-Type Assays 5.6.1 Basic Concept 5.6.2 General Considerations 5.6.2.1 Assay Design and Development 5.6.3 Fluorescence Polarization/Anisotropy 5.6.3.1 Assay Design 5.6.4 Fluorescent/Förster Resonance Energy Transfer and Time-Resolved (TR) FRET 5.6.5 AlphaScreen Format 5.6.5.1 Optical Biosensors 5.6.5.2 Nuclear Magnetic Resonance (NMR) 5.6.5.3 Isothermal Calorimetry (ITC) 5.6.5.4 Sedimentation Analysis (SA; Analytical Ultracentrifugation) 5.6.5.5 X-Ray Crystallography 5.7 In Vitro Toxicity and Drug Efficacy Testing 5.8 In Vivo Assay Validation 5.8.1 General Concepts 5.8.1.1 Pre-Study Validation 5.8.1.2 In-Study Validation 5.8.1.3 Cross-Validation 5.8.1.4 Resources 5.8.2 Assay Validation Procedures 5.8.2.1 Pre-Study Validation 5.9 Pharmacokinetics and Drug Metabolism 5.9.1 In Vitro Analysis 5.9.1.1 Lipophilicity 5.9.1.2 Solubility 5.9.1.3 Hepatic Microsome Stability 5.9.1.4 Plasma Stability 5.9.1.5 Plasma Protein Binding 5.9.1.6 Screening Cytotoxicity and Hepatotoxicity Test 5.9.1.7 CYP450 Inhibition Profiling 5.9.1.8 Permeability 5.10 Conclusion Additional Reading Chapter 6 Nanomedicine 6.1 Background 6.2 Delivery Routes 6.3 Liposomes 6.4 Dendrimers 6.5 Polymers 6.6 Metal Particles 6.7 Quantum Dots 6.8 Fullerenes 6.9 Theranostics 6.10 Diagnostics 6.11 Specific Diseases 6.11.1 IBD 6.11.2 Diabetes 6.11.3 Cancer 6.12 Regulatory Additional Reading Chapter 7 Antimicrobials 7.1 Background 7.2 Eradicable Diseases 7.2.1 Polio 7.2.2 Guinea Worm Disease (Dracunculiasis) 7.2.3 Lymphatic Filariasis 7.2.4 Measles, Mumps, and Rubella 7.2.5 Cysticercosis 7.2.6 Yaws 7.2.7 Trachoma 7.2.8 Onchocerciasis 7.2.9 Malaria 7.3 Vaccines 7.3.1 Live-Attenuated Vaccines 7.3.2 Inactivated Vaccines 7.3.3 Subunit, Recombinant, Polysaccharide, and Conjugate Vaccines 7.3.4 Toxoid Vaccines 7.3.5 Nucleic Acid Vaccines 7.4 Antibiotics 7.4.1 Antibiotic Discovery 7.4.1.1 Semi-Synthetic 7.4.1.2 Synthetic 7.4.1.3 Genomic Approaches 7.4.2 Reverse Genomics: Revival of Cell-Based Screening 7.4.3 Post-Genomics 7.4.3.1 Transcriptomics, Proteomics, and Lipidomics 7.4.3.2 Metabolomics to Meta-Omics 7.5 Phage Therapy 7.6 Microbiome 7.6.1 Impact on Health 7.6.2 Drug Metabolism 7.6.3 Drug Toxicity 7.6.4 Biomarkers 7.7 Conclusion Additional Reading Chapter 8 Therapeutic Proteins 8.1 Background 8.2 Protein Structure and Properties 8.2.1 Primary Structure 8.2.2 Secondary Structure 8.2.2.1 Alpha Helix 8.2.2.2 Beta-Sheet 8.2.3 Tertiary Structure 8.2.4 Quaternary Structure 8.2.5 Post-Translational Modification (PTM) 8.2.6 Association and Aggregation 8.3 Non-Antibody Therapeutic Proteins 8.3.1 Hormone Peptide Drugs 8.3.2 Human Hematopoietic Factor 8.3.3 Human Cytokines 8.3.4 Human Plasma Protein Factor 8.3.5 Human Bone Formation Protein 8.3.6 Enzymes 8.4 Antibody Therapeutic Proteins 8.4.1 Mode of Action 8.4.2 Types of Antibodies 8.4.2.1 Recombinant Antibodies 8.4.2.2 Synthetic Antibodies 8.4.2.3 Affimer Proteins 8.4.2.4 Structural Protein Scaffolds 8.4.2.5 Bispecific Antibodies (BsAbs) 8.4.2.6 Multi-Specific Antibodies (MsAbs) 8.4.2.7 Fab Fragments and Single-Chain Antibodies 8.4.2.8 Humanized and Chimeric mAbs 8.4.2.9 Affinity Maturation 8.4.2.10 Antigenized Antibodies 8.4.2.11 IgG1 Fusion Proteins 8.4.2.12 Drug or Toxin Conjugation 8.4.2.13 Future Antibodies 8.4.3 Development of Antibodies 8.4.4 Exogenous Methods 8.4.4.1 Mouse Hybridoma 8.4.4.2 Transgenic Mice 8.4.5 Surface Display Libraries 8.4.5.1 Phage Display 8.4.5.2 Yeast Display 8.4.5.3 Ribosome Display 8.4.5.4 mRNA Display 8.4.6 Recombinant Expression 8.5 Immunogenicity 8.5.1 Protein Immunogenicity 8.5.2 Immunogenicity Testing 8.5.3 Innate System 8.5.4 Adaptive System 8.6 Pharmacokinetics of Therapeutic Proteins 8.6.1 Absorption 8.6.2 Distribution 8.6.3 Elimination 8.6.4 Pharmacokinetic Manipulations 8.6.4.1 Protein Modification to Increase Duration of Action 8.6.4.2 Protein Pegylation 8.6.4.3 Unnatural Construction 8.7 Conclusion Additional Reading Chapter 9 Manufacturing Trends 9.1 Background 9.2 Process Optimizations 9.2.1 Cell Line Development 9.2.2 Media 9.2.3 High Cell Density Cryopreservation 9.2.4 Cell Culture Operations 9.2.5 Bioreactor Cycle 9.3 Single-Use Technology (SUT) 9.3.1 Containers and Mixing Systems 9.3.2 Drums, Containers, and Tank Liners 9.3.2.1 2D Bags 9.3.2.2 3D Bags 9.3.3 Advantages 9.3.4 Single-Use Bioreactors (SUBS) 9.3.5 Other Components 9.3.5.1 Optical Sensors 9.3.5.2 Biomass Sensors 9.3.5.3 Electrochemical Sensors 9.3.5.4 Pressure Sensors 9.3.5.5 Sampling Systems 9.3.5.6 Connectors 9.3.5.7 Tubing 9.3.5.8 Pumps 9.3.5.9 Tube Welder and Sealers 9.3.6 Sampling 9.3.7 Downstream Processing 9.3.7.1 Cell Harvest 9.3.7.2 Purification 9.3.7.3 Virus Removal 9.3.7.4 Filtration—UF/DF and TFF 9.3.7.5 General Filtration Applications 9.3.8 Fill Finish Operations 9.3.9 Safety 9.3.9.1 Polymers and Additives 9.3.9.2 Material Selection 9.3.9.3 Testing 9.3.9.4 Regulatory 9.4 Online Monitoring 9.5 Continuous Manufacturing 9.5.1 Continuous Chromatography Operations 9.5.1.1 Straight Through Processing (STP) 9.5.1.2 Periodic Countercurrent Chromatography (PCC) 9.5.1.3 Simulated Moving Bed (SMB) Chromatography 9.6 Conclusion Appendix: Databases Relevant to Antibodies Additional Reading Chapter 10 Therapeutic Protein Delivery Systems 10.1 Background 10.2 Route Selection 10.2.1 Selection 10.2.2 Excipients and Properties 10.2.2.1 pH 10.2.2.2 Surface Tension 10.2.2.3 Tonicity 10.2.2.4 Protectants 10.2.2.5 Stabilizers 10.2.3 Liquid Formulations 10.2.4 Lyophilized Formulations 10.3 Delivery Routes 10.3.1 Intravenous 10.3.2 Subcutaneous 10.3.3 Oral 10.3.4 Nasal 10.3.5 Transdermal 10.3.6 Pulmonary 10.3.7 Ocular 10.3.8 Rectal 10.4 Formulation Technologies 10.4.1 Hydrogels and In Situ Forming Gels 10.4.2 Nanoparticles 10.4.3 Liposome 10.4.4 Higher Concentration Formulations 10.5 Examples of Formulation 10.5.1 Oprelvekin Injection (Interleukin IL-11) 10.5.2 Interleukin Injection (IL-2) 10.5.3 Interferon Alfa-2a Injection 10.5.4 Interferon Beta-1b 10.5.5 Interferon Beta-1a Injection 10.5.6 Interferon Alfa-n3 Injection 10.5.7 Interferon Alfacon-1 Injection 10.5.8 Interferon Gamma-1b Injection 10.5.9 Infliximab for Injection 10.5.10 Daclizumab for Injection 10.5.11 Coagulation Factor VIIa (Recombinant) Injection 10.5.12 Reteplase Recombinant for Injection 10.5.13 Alteplase Recombinant Injection 10.6 Conclusion Appendix 10.1 Physicochemical Properties of Proteins and Peptides Approved by the FDA Chapter 11 Gene and Cell Therapy 11.1 Background 11.2 Gene Therapy 11.2.1 Viral Vector Manufacturing 11.2.2 Downstream Manufacturing 11.2.3 Risks of Gene Therapy 11.2.4 Gene Editing 11.2.5 Techniques 11.2.6 Gene Editing Technologies 11.2.7 CRISPR 11.2.8 DNA-Based Therapeutics 11.2.9 Gene Transfer Technologies 11.2.9.1 Mechanical and Electrical Techniques 11.2.9.2 Vector-Assisted Delivery Systems 11.2.10 Approved Products 11.3 Cell Therapy 11.3.1 Types of Cell Therapies 11.3.2 CAR-T Therapy 11.3.3 Allogenic Cell Therapy 11.4 Regulatory Considerations 11.4.1 Development and Characterization of Cell Populations for Administration (https://www.fda.gov/media/72402/download) 11.4.1.1 Collection of Cells 11.4.1.2 Tissue Typing 11.4.1.3 Procedures 11.4.2 Characterization and Release Testing of Cellular Gene Therapy Products 11.4.2.1 Cell Identity 11.4.2.2 Potency 11.4.2.3 Viability 11.4.2.4 Adventitious Agent Testing 11.4.2.5 Purity 11.4.2.6 General Safety Test 11.4.2.7 Frozen Cell Banks 11.4.3 Additional Applications: Addition of Radioisotopes or Toxins to Cell Preparations 11.4.4 Production, Characterization, and Release Testing of Vectors for Gene Therapy 11.4.4.1 Vector Construction and Characterization 11.4.4.2 Vector Production System 11.4.4.3 Master Viral Banks 11.4.4.4 Lot-to-Lot Release Testing and Specifications for Vectors 11.4.4.5 Adventitious Agents 11.4.5 Issues Related to Particular Classes of Vectors for Gene Therapy 11.4.5.1 Additional Considerations for the Use of Plasmid Vector Products 11.4.5.2 Additional Considerations for the Use of Retroviral Vector Products 11.4.5.3 Additional Considerations for the Use of Adenoviral Vectors 11.4.6 Modifications in Vector Preparations 11.4.7 Preclinical Evaluation of Cellular and Gene Therapies 11.4.7.1 General Principles 11.4.7.2 Animal Species Selection and Use of Alternative Animal Models 11.4.7.3 Somatic Cell and Gene-Modified Cellular Therapies 11.4.7.4 Direct Administration of Vectors In Vivo 11.4.7.5 Expression of Gene Product and Induction of Immune Responses 11.4.7.6 Vector Localization to Reproductive Organs 11.5 Conclusion Additional Reading Chapter 12 Nucleic Acid Vaccines 12.1 Background 12.2 mRNA Vaccine 12.2.1 Development Cycle 12.2.2 Formulation and Delivery 12.2.3 COVID-19 Vaccine 12.3 DNA Vaccine 12.3.1 Delivery 12.3.2 Antibody Response Additional Reading Chapter 13 Botanical Products 13.1 Overview 13.2 Complimentary Medicines 13.2.1 History 13.2.2 Development Innovations 13.2.3 Technologies 13.2.4 Genomics and Biomarkers 13.2.5 Proteomics 13.2.6 Target Identification of Label-Free Botanical Products 13.2.7 Metabolomics and Metabonomics 13.3 Regulatory Plan 13.3.1 Background 13.3.2 Chemistry 13.3.3 Specifications 13.3.4 Standardization 13.3.5 Efficacy and Safety 13.3.6 Prior Human Use 13.3.7 CMC 13.3.7.1 Starting Material 13.3.7.2 Control of Botanical Substances and Preparations 13.3.7.3 Control of Vitamins and Minerals (If Applicable) 13.3.7.4 Control of Excipients 13.3.7.5 Stability Testing 13.3.7.6 Testing Criteria 13.3.7.7 Botanical Substances 13.3.7.8 Botanical Product 13.4 Conclusion Additional Reading Chapter 14 Regulatory Optimization 14.1 Background 14.2 Scope 14.2.1 Assumptions 14.2.2 Definitions 14.3 New Chemical Entities 14.3.1 Decision Stage #1—Target Identification 14.3.2 Decision Stage #2—Target Validation 14.3.3 Decision Stage #3—Identification of Actives 14.3.4 Decision Stage #4—Confirmation of Hits 14.3.5 Decision Stage #5—Identification of Chemical Lead 14.3.6 Decision Stage #6—Selection of Optimized Chemical Lead 14.3.7 Decision Stage #7—Selection of a Development Candidate 14.3.8 Decision Stage #8—Pre-IND Meeting with the FDA 14.3.9 Decision Stage #9—Preparation and Submission of an IND Application 14.3.10 Decision Stage #10—Human Proof of Concept 14.3.11 Decision Stage #11—Clinical Proof of Concept 14.4 Repurposing of Marketed Drugs 14.4.1 Decision Stage #1: Identification of Actives 14.4.2 Decision Stage #2: Confirmation of Hits 14.4.3 Decision Stage #3: Gap Analysis/Development Plan 14.4.4 Decision Stage #4: Clinical Formulation Development 14.4.5 Decision Stage #5: Preclinical Safety Data Package 14.4.6 Decision Stage #6: Clinical Supplies Manufacture 14.4.7 Decision Stage #7: IND Preparation and Submission 14.4.8 Decision Stage #8: Human Proof of Concept 14.5 Drug Delivery Platform Technology 14.5.1 Decision Stage #1: Clinical Formulation Development 14.5.2 Decision Stage #2: Development Plan 14.5.3 Decision Stage #3: Clinical Supplies Manufacture 14.5.4 Decision Stage #4: Preclinical Safety Package 14.5.5 Decision Stage #5: IND Preparation and Submission 14.5.6 Decision Stage #6: Human Proof of Concept 14.5.7 Decision Stage #7: Clinical Proof of Concept 14.6 Biological Products 14.6.1 Batch 14.6.2 Upstream 14.6.3 Downstream 14.6.4 Facility 14.6.5 Equipment 14.6.6 Validation 14.6.7 Testing 14.6.8 Quality 14.6.9 Fill 14.6.10 Water 14.6.11 Facility Design 14.6.12 Cleaning 14.6.13 Filling and Finishing 14.7 Testing 14.8 Documentation Process 14.8.1 Process Analytical Technology (PAT) 14.8.2 Automation 14.9 Predictions 14.10 Conclusion Additional Reading Chapter 15 Intellectual Property 15.1 Background 15.2 About Patents 15.3 Patent Landscape 15.4 Patent Laws 15.4.1 Pharmaceutical Patenting Practices 15.5 Types of Patents 15.5.1 Utility Model in the EU 15.5.2 Provisional Application 15.6 Nonobviousness 15.7 Patent Management 15.7.1 Broad Coverage 15.7.2 Submarine Patents 15.7.3 System Expression Patents 15.7.4 Process Patents of Originator 15.7.5 Third-Party Process Patents 15.7.6 Formulation Composition 15.7.7 Lifecycle Formulation Projections 15.7.8 Alternate Offering 15.7.9 Delivery Devices 15.7.10 Unpatentable Inventions 15.7.11 Software Patents 15.7.12 Medical Method Patents 15.8 Patent Classification 15.8.1 Class 435 15.8.2 Class 424 15.8.3 Class 801 15.9 Biological Patents 15.9.1 Biological Products 15.9.2 Monoclonal Antibody Technology 15.9.3 Antisense Technology 15.9.4 Transgenic Plants 15.10 Freedom to Operate 15.11 Conclusion Additional Reading Index