دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: James Bryant. Aloke Mukherjee
سری:
ISBN (شابک) : 9781805123347
ناشر: Packt
سال نشر: 2023
تعداد صفحات: 406
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 25 Mb
در صورت تبدیل فایل کتاب The Future of Finance with ChatGPT and Power BI Transform your trading, investing, and financial reporting with ChatGPT به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آینده امور مالی با ChatGPT و Power BI تجارت، سرمایه گذاری و گزارش مالی خود را با ChatGPT متحول کنید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
با این راهنمای جامع، هوش مالی را بالا ببرید، با اطمینان در بازارها حرکت کنید و سفر مالی خود را متحول کنید.
Elevate financial acumen, confidently navigate markets, and revolutionize your finance journey with this comprehensive guide.
Cover Copyright Contributors Table of Contents Preface Part 1: From Financial Fundamentals to Frontier Tech: Navigating the New Paradigms of Data, EVs, and AgTech Chapter 1: Financial Mastery with ChatGPT: From Basics to AI Insights Technical requirements An introduction to key financial concepts and investment principles Basic investment types and investment strategies Introducing financial statements Understanding financial ratios and metrics Interpreting financial ratios and metrics The fundamentals of technical analysis Combining fundamental and technical analysis Understanding the power of ChatGPT in financial analysis Integrating ChatGPT into Your Financial Analysis Workflow Getting started with ChatGPT for finance Refining your interactions with ChatGPT ChatGPT for financial analysis – analyzing earnings reports for Palo Alto Networks Instructions to access and store Palo Alto Networks’ 10-Q reports using sec-api (September 2021–March 2023) Instructions for analyzing 10-Q reports with ChatGPT ChatGPT’s analysis and insights Further exploration with ChatGPT Combining ChatGPT with fundamental analysis Summary Chapter 2: Creating Financial Narratives with Power BI and ChatGPT Technical requirements A brief overview of Power BI and its applications in finance The benefits of combining Power BI with ChatGPT insights The importance of structuring data in financial analysis Importing data into Power BI Visualization techniques in Power BI Selecting appropriate visualizations for financial data Tips for creating effective financial visualizations Creating financial dashboards with Power BI Arranging financial visuals for clarity in Power BI Illustration – Power BI dashboard of finance data Best practices for data modeling, visualization, and ChatGPT integration Ensuring clean and well-structured data modeling Choosing the right visualizations for effective communication Leveraging ChatGPT insights to enhance financial analysis Ensuring data security and privacy Walk-through use case – analyzing financial data using Power BI Walk-through use case – analyzing financial ratios using Power BI and ChatGPT Summary Chapter 3: Tesla’s Financial Journey: AI Analysis and Bias Unveiled Introduction to ChatGPT and AI in financial analysis Venturing beyond convention—exploring Tesla’s unconventional data sources Shifting gears—rethinking metrics and KPIs for Tesla News and earnings call transcripts—unveiling the sentiment spectrum Tesla: growth drivers and potential risks Benchmarking and ratio analysis: AI-driven insights Trading strategies based on risk preference Case study: Tesla Inc. Evaluating investment opportunities and risks with AI-driven insights Tesla trading strategy (aggressive and conservative) Aggressive trading strategy using options Conservative trading strategy using position trading News and market sentiment integration for trading strategies: aggressive and conservative Power BI visualizations—Tesla Financial visualizations—data extraction to Power BI visualizations Instructions Market competition visualizations–data extraction to Power BI visualization KPI visualizations–data extraction to Power BI visualization Final thoughts: leveraging ChatGPT and the OpenAI API in your data visualization workflow Best practices and ethics in AI-driven financial analysis Understanding AI model bias Summary Chapter 4: John Deere’s AgTech Revolution – AI Insights and Challenges Digitizing the fields – unleashing a tech revolution with John Deere Future opportunities and predictions Digital seedbed – a comparative analysis of AgTech titans The hidden goldmine – unearthing unconventional data for strategic investments in John Deere John Deere’s AgTech Revolution – AI Insights and Challenges Unlocking the power of quantitative investing – a game-changer for agri-business Quantitative trading example – John Deere Power BI visualization for quantitative trading example – John Deere Unveiling the power of advanced financial metrics and valuation methods through Power BI visualization Unveiling value – harnessing AI for discounted cash flow analysis Visualizing the future – leveraging Power BI to explore John Deere’s potential in emerging markets with DCF analysis Embracing the AI revolution with AutoGPT – reshaping financial analysis and trading through autonomous AI The pros and cons of AutoGPT in financial analysis Using AutoGPT in finance, investment, and trading Using AutoGPT for automated trading (moving average trading example) AutoGPT – financial analysis Monte Carlo simulation Portfolio rebalancing strategy – AutoGPT Python power play – fueling financial analysis with advanced code Weather score calculation – weather trade Location and crop type – weather trade Trade threshold suggestions – weather trade Seeds of fortune – unraveling the correlation between weather patterns and John Deere’s stock performance Connecting OpenAI with Power BI Understanding and mitigating LLM “hallucinations” in financial analysis and data visualization Understanding hallucinations How can we spot hallucinations? What can we do about hallucinations? Minimizing hallucinations in the future OpenAI is on the case Trading examples Power BI visualization examples Summary Part 2: Pioneers and Protectors: AI Transformations in Software, Finance, Biotech, and Cybersecurity Chapter 5: Salesforce Reimagined: Navigating Software and LLMs Salesforce’s turnaround – a market sentiment perspective The phoenix’s first flight – recognizing the downtrend The game plan – activist investors move in Restoring faith – a bold new direction Seeing the change – sentiment analysis at work The payoff – the turnaround Igniting the AI revolution – Salesforce’s rise into the next era A comprehensive SWOT analysis for Salesforce Salesforce – strategic inflection point Leveraging AI and sentiment – Salesforce sentiment-adjusted options straddle AI, the Rule of 40 (SaaS metric), and sentiment – mastering the Salesforce stock trade Visualizing the Salesforce strategy – Power BI meets the Rule of 40 ActivistGPT – activist persona ActivistGPT – LangChain, ChatGPT, and Streamlit activist AI agent Open source versus proprietary LLMs Proprietary models Open source models Future of open source versus proprietary models Best model choice for finance use cases (investing, trading, and financial analysis) Best model for Power BI narratives – data visualizations Other major factors when training LLMs Data quality versus data size What is OpenAI doing about open source model competition? Summary Chapter 6: SVB’s Downfall and Ethical AI: Smart AI Regulation The pastry chef’s tale – unpacking the collapse of SVB The silicon storm – dissecting the downfall of SVB Harnessing the social pulse – the Sentinel Strategy for banking trading decisions Obtain the Twitter (now X) API (if you don’t have one already) Data collection Next steps – pre-processing, applying NLP, and quantifying sentiment Pre-processing, NLP application, and quantifying sentiment Tracking traditional indicators Formulating trading signals The backtest strategy Implementing the strategy Implementing the Financial Fortress trading strategy – a data-driven approach using Python and Power BI The steps to obtain a FRED API key Portfolio rebalancing Risk management Integrating Twitter (now X) sentiment and CAR – Power BI data visualization Extracting the data Loading data into Power BI Transforming data Visualizing data with a heat map Revolutionizing Financial Oversight with BankRegulatorGPT – An AI Persona Regulatory Actions and Audits – Provide official confirmation of a bank’s financial health BankRegulatorGPT – Langchain, GPT-4, Pinecone, and the Databutton financial regulation AI agent BankRegulatorGPT (reflecting traits from leading regulatory bodies such as the Federal Reserve, the Office of the Comptroller of the Currency, and the Federal Deposit Insurance Corporation) Implementing the Regional Bank ETF trade – a commercial real estate strategy Visualizing the ETF trade – a Power BI dashboard for the commercial real estate market The importance of smart AI regulation – navigating pitfalls and seizing opportunities Navigating the AI revolution – a cautionary tale from the lack of regulation in social media Global cooperation – a key to ethical AI in finance AI regulation – a necessary safeguard for the future of finance AI regulation – a balancing act in the future of finance AI regulation and legislation – a comprehensive timeline Summary Chapter 7: Moderna and OpenAI – Biotech and AGI Breakthroughs The blockbuster saga – understanding the success of Moderna’s COVID-19 vaccine Moderna’s mRNA odyssey and the transformation of biomedicine The impact of mRNA-1273 – battling a pandemic Harnessing the power of mRNA – a new medicinal frontier Applications across medical domains Redefining vaccine development A new paradigm for pharmaceutical innovation Strategic partnerships and collaborations SWOT analysis of Moderna’s strategic landscape The integration of AI and quantum computing in Moderna’s therapeutic landscape AI in Moderna’s drug discovery process AI in Moderna’s clinical trials AI in Moderna’s pharmacovigilance and post-marketing surveillance AI in Moderna’s supply chain and manufacturing efficiency AI in Moderna’s drug development strategy Integration with quantum computing The future reimagined – Moderna’s AI-driven symphony in medicine and biotechnology Moderna – orchestrating the AI symphony in biotechnology The collaboration with IBM – a milestone in innovation Digital infrastructure – a backbone of innovation A new chapter – the Moderna-IBM partnership IBM partnership – quantum computing and AI Moderna’s AI Academy – a partnership with CMU for technological innovation Moderna’s AI Academy in partnership with CMU Confronting future pandemics – Moderna’s innovation in multi-valent vaccines and AI-driven antivirals Revolutionizing cancer care – Moderna’s mRNA ambitions in oncology The brave new world of medicine – Moderna’s pioneering path to personalized therapies Moderna’s strategic move toward outsourcing pharma manufacturing Moderna Momentum – a data-driven, sentiment-sensitive strategy for an mRNA masterstroke The future of biotech trading – the Moderna Momentum trade visualization Prerequisites Introducing the future of drug development and regulatory approval with FoodandDrugAdminGPT – an AI persona Unleashing collaborative intelligence – Microsoft Jarvis (GitHub) A new epoch in AI – the multifaceted excellence of HuggingGPT and its integration with Gradio models Unleashing creativity with Gradio – a gateway to simplified demos and GUIs for Hugging Face models Choosing the right AI model – HuggingGPT (Jarvis) versus GPT-4 for domain-specific expertise Harnessing specialized intelligence – FoodandDrugAdminGPT’s implementation using HuggingGPT for multimodal solutions in the regulatory landscape HuggingGPT model and Gradio demo Section 1 – investment insight with FoodandDrugAdminGPT – a comprehensive query guide Why it matters Section 2 – Moderna’s drug pipeline – tailored insight for investment and Wall Street analysis Why it matters Section 3 – Unlocking Moderna’s pipeline – critical questions for investors using HuggingfaceGPT Why it matters Overall implications Section 1 – investment insight with FoodandDrugAdminGPT – a comprehensive query guide Section 2 – Moderna’s drug pipeline – tailored insight for investment and Wall Street analysis Section 3 – unlocking Moderna’s pipeline – critical questions for investors using HuggingfaceGPT Revolutionizing biotech with GPT-4 – Moderna’s pathway to accelerated drug discovery OpenAI’s pinnacle against tech giants OpenAI and Moderna – a new frontier in drug discovery OpenAI’s history and focus on AGI OpenAI’s AGI initiatives – a trailblazing journey toward intelligence revolution AGI – alignment and why it matters – conducting the symphony of intelligence AGI principles and future scenarios in finance – your financial partner of tomorrow Summary Chapter 8: CrowdStrike: Cybersecurity in the Era of Deepfakes The concert and cybersecurity analogy – concert security for the digital stage GPT-4, multimodal activity, and financial exposure – a cautionary tale The multimodal capabilities of GPT-4 Amazon One and the age of biometrics Cybersecurity risks in finance The implications for data visualization Protecting sensitive information Understanding CrowdStrike’s security capabilities CrowdScore – a paradigm shift in threat management The SCORE analysis of CrowdStrike – navigating financial cyber risks and opportunities CrowdStrike and Dell Technologies: a strategic alliance in commercial cybersecurity The alliance: building a comprehensive cyber defense Financial implications and cybersecurity The power of data visualization Conclusion: the future of cybersecurity and finance Analyzing CrowdStrike’s earnings call transcripts with AI and NLP The role of earnings call transcripts in finance Aggressive trading (using options) – buying call options on Beazley and Hiscox and selling put options on CrowdStrike Example functions with highlighted replacement areas Conservative trading (using stock) – buying stock in Beazley and Hiscox and buying stock in CrowdStrike once it falls 5% from its current price Example functions with highlighted replacement areas The ultimate guide to investment dashboards – Power BI meets ChatGPT Power BI visualizations Aggressive trading using options on Beazley, Hiscox, and CrowdStrike Conservative trade: buying stock in Beazley, Hiscox, and CrowdStrike after a 5% fall Power BI alert configuration (example for CrowdStrike put alert but can be used for Crowdstrike stock alert too) Harnessing Python’s power for aggressive trading: a code-driven odyssey The Zen of conservative trade: unleashing Python for steady gains Visual alchemy: transmuting raw data into golden insights with Power BI Creating Power BI visualizations Integration with ChatGPT (GPT-4) HackerGPT (AI Persona) – monitoring and analyzing cybersecurity regulatory changes and breaches HackerGPT – reflecting traits from leading cybersecurity experts HackerGPT meets FinGPT – a comprehensive guide to analyzing the financial cybersecurity landscape Revolutionizing the future of AI-driven development with MetaGPT – the ultimate catalyst for multi-agent systems What is MetaGPT? Role-based collaboration in MetaGPT MetaGPT workflow Introduction to the MetaGPT model (cybersecurity investment opportunities) Roles and responsibilities Compromising real-world LLM-integrated applications with indirect prompt injection Future-proofing LLMs – solutions on the horizon Deepfakes and their multi-faceted impact – a closer look with AI and data visualization AI literacy – your passport to the future Navigating AI’s landscape – considerations and guidelines Summary Index Other Books You May Enjoy