دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Carl F. Lorenzo, Tom T. Hartley سری: ISBN (شابک) : 1119139406, 9781119139409 ناشر: John Wiley & Sons سال نشر: 2017 تعداد صفحات: 435 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب The Fractional Trigonometry: With Applications to Fractional Differential Equations and Science به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مثلثات کسری: با کاربرد در معادلات دیفرانسیل کسری و علم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
به میدان رو به رشد حساب کسری می پردازد و راه حل های ساده ای برای معادلات دیفرانسیل کسری خطی با مرتبه متناسب ارائه می دهد
مثلثات کسری: با کاربرد در معادلات دیفرانسیل کسری و علمنتیجه کار نویسندگان در حساب کسری و به ویژه در توابع برای حل معادلات دیفرانسیل کسری است که در رفتار توابع نمایی تعمیم یافته تقویت می شود. نویسندگان در مورد اینکه چگونه مثلثات کسری با ارائه راه حل هایی برای معادلات دیفرانسیل کسری خطی، نقشی مشابه با مثلثات کلاسیک برای حساب کسری ایفا می کند، بحث می کنند. کتاب با یک فصل مقدماتی شروع میشود که بینشی در مورد مبانی حساب کسری ارائه میدهد و سپس پوشش موضوعی در دو بخش اصلی سازماندهی میشود. بخش اول تعاریف و تئوری های نمایی کسری و مثلثات کسری را توسعه می دهد. بخش دوم بینشی در زمینه های مختلف کاربرد بالقوه در علوم ارائه می دهد. تابع نمایی کسری از طریق معادله دیفرانسیل کسری اساسی، تابع نمایی تعمیم یافته، و روابط تابع R علاوه بر هذلولتری کسری، مثلثات کسری R1، مثلثات کسری R2 و توابع مثلثاتی R3 مورد بحث قرار میگیرند. مثلثات کسری: با کاربردهایی در معادلات دیفرانسیل کسری و علم نیز:
مثلثات کسری: با کاربرد در معادلات دیفرانسیل کسری و علم< /i> یک مرجع ایده آل برای محققان دانشگاهی، مهندسان پژوهش، دانشمندان پژوهشگر، ریاضیدانان، فیزیکدانان، زیست شناسان و شیمیدانانی است که نیاز به اعمال روش های جدید حساب کسری در رشته های مختلف دارند. این کتاب همچنین به عنوان یک کتاب درسی برای دوره های تحصیلات تکمیلی و دکترا در حساب کسری مناسب است.
کارل اف. لورنزو همکار پژوهشی برجسته در مرکز تحقیقات ناسا گلن در کلیولند است. ، اوهایو سمت های گذشته او شامل مهندس ارشد بخش ابزار دقیق و کنترل و رئیس بخش فناوری کنترل پیشرفته و دینامیک سیستم ها در ناسا است. او در سطح بین المللی به دلیل کارش در توسعه و کاربرد حساب کسری و مثلثات کسری شناخته شده است.
تام تی هارتلی، دکترا، استاد بازنشسته در گروه برق و مهندسی کامپیوتر در دانشگاه آکرون دکتر هارتلی یک متخصص شناخته شده در سیستم های مرتبه کسری است و همراه با کارل لورنزو، مشکلات اساسی را در این زمینه حل کرده است، از جمله مسئله تابع اولیه سازی تابع مکمل ریمان. او دکترای خود را در رشته مهندسی برق از دانشگاه واندربیلت دریافت کرد.
Addresses the rapidly growing field of fractional calculus and provides simplified solutions for linear commensurate-order fractional differential equations
The Fractional Trigonometry: With Applications to Fractional Differential Equations and Science is the result of the authors’ work in fractional calculus, and more particularly, in functions for the solutions of fractional differential equations, which is fostered in the behavior of generalized exponential functions. The authors discuss how fractional trigonometry plays a role analogous to the classical trigonometry for the fractional calculus by providing solutions to linear fractional differential equations. The book begins with an introductory chapter that offers insight into the fundamentals of fractional calculus, and topical coverage is then organized in two main parts. Part One develops the definitions and theories of fractional exponentials and fractional trigonometry. Part Two provides insight into various areas of potential application within the sciences. The fractional exponential function via the fundamental fractional differential equation, the generalized exponential function, and R-function relationships are discussed in addition to the fractional hyperboletry, the R1-fractional trigonometry, the R2-fractional trigonometry, and the R3-trigonometric functions. The Fractional Trigonometry: With Applications to Fractional Differential Equations and Science also:
The Fractional Trigonometry: With Applications to Fractional Differential Equations and Science is an ideal reference for academic researchers, research engineers, research scientists, mathematicians, physicists, biologists, and chemists who need to apply new fractional calculus methods to a variety of disciplines. The book is also appropriate as a textbook for graduate- and PhD-level courses in fractional calculus.
Carl F. Lorenzo is Distinguished Research Associate at the NASA Glenn Research Center in Cleveland, Ohio. His past positions include chief engineer of the Instrumentation and Controls Division and chief of the Advanced Controls Technology and Systems Dynamics branches at NASA. He is internationally recognized for his work in the development and application of the fractional calculus and fractional trigonometry.
Tom T. Hartley, PhD, is Emeritus Professor in the Department of Electrical and Computer Engineering at The University of Akron. Dr Hartley is a recognized expert in fractional-order systems, and together with Carl Lorenzo, has solved fundamental problems in the area including Riemann’s complementary-function initialization function problem. He received his PhD in Electrical Engineering from Vanderbilt University.
Content: Preface xv Acknowledgments xix About the Companion Website xxi 1 Introduction 1 1.1 Background 2 1.2 The Fractional Integral and Derivative 3 1.3 The Traditional Trigonometry 6 1.4 Previous Efforts 8 1.5 Expectations of a Generalized Trigonometry and Hyperboletry 8 2 The Fractional Exponential Function via the Fundamental Fractional Differential Equation 9 2.1 The Fundamental Fractional Differential Equation 9 2.2 The Generalized Impulse Response Function 10 2.3 Relationship of the F-function to the Mittag-Leffler Function 11 2.4 Properties of the F-Function 12 2.5 Behavior of the F-Function as the Parameter a Varies 13 2.6 Example 16 3 The Generalized Fractional Exponential Function: The R-Function and Other Functions for the Fractional Calculus 19 3.1 Introduction 19 3.2 Functions for the Fractional Calculus 19 3.3 The R-Function: A Generalized Function 22 3.4 Properties of the Rq,v(a, t)-Function 23 3.5 Relationship of the R-Function to the Elementary Functions 27 3.6 R-Function Identities 29 3.7 Relationship of the R-Function to the Fractional Calculus Functions 31 3.8 Example: Cooling Manifold 32 3.9 Further Generalized Functions: The G-Function and the H-Function 34 3.10 Preliminaries to the Fractional Trigonometry Development 38 3.11 Eigen Character of the R-Function 38 3.12 Fractional Differintegral of the TimeScaled R-Function 39 3.13 R-Function Relationships 39 3.14 Roots of Complex Numbers 40 3.15 Indexed Forms of the R-Function 41 3.16 Term-by-Term Operations 44 3.17 Discussion 46 4 R-Function Relationships 47 4.1 R-Function Basics 47 4.2 Relationships for Rm,0 in Terms of R1,0 48 4.3 Relationships for R1Mm,0 in Terms of R1,0 50 4.4 Relationships for the Rational Form RmMp,0 in Terms of R1Mp,0 51 4.5 Relationships for R1Mp,0 in Terms of RmMp,0 53 4.6 Relating RmMp,0 to the Exponential Function R1,0(b, t) = ebt 54 4.7 Inverse Relationships Relationships for R1,0 in Terms of Rm,k 56 4.8 Inverse Relationships Relationships for R1,0 in Terms of R1Mm,0 57 4.9 Inverse Relationships Relationships for eat = R1,0(a, t) in Terms of RmMp,0 59 4.10 Discussion 61 5 The Fractional Hyperboletry 63 5.1 The Fractional R1-Hyperbolic Functions 63 5.2 R1-Hyperbolic Function Relationship 72 5.3 Fractional Calculus Operations on the R1-Hyperbolic Functions 72 5.4 Laplace Transforms of the R1-Hyperbolic Functions 73 5.5 Complexity-Based Hyperbolic Functions 73 5.6 Fractional Hyperbolic Differential Equations 74 5.7 Example 76 5.8 Discussions 77 6 The R1-Fractional Trigonometry 79 6.1 R1-Trigonometric Functions 79 6.2 R1-Trigonometric Function Interrelationship 88 6.3 Relationships to R1-Hyperbolic Functions 89 6.4 Fractional Calculus Operations on the R1-Trigonometric Functions 89 6.5 Laplace Transforms of the R1-Trigonometric Functions 90 6.6 Complexity-Based R1-Trigonometric Functions 92 6.7 Fractional Differential Equations 94 7 The R2-Fractional Trigonometry 97 7.1 R2-Trigonometric Functions: Based on Real and Imaginary Parts 97 7.2 R2-Trigonometric Functions: Based on Parity 102 7.3 Laplace Transforms of the R2-Trigonometric Functions 111 7.4 R2-Trigonometric Function Relationships 113 7.5 Fractional Calculus Operations on the R2-Trigonometric Functions 119 7.6 Inferred Fractional Differential Equations 127 8 The R3-Trigonometric Functions 129 8.1 The R3-Trigonometric Functions: Based on Complexity 129 8.2 The R3-Trigonometric Functions: Based on Parity 134 8.3 Laplace Transforms of the R3-Trigonometric Functions 140 8.4 R3-Trigonometric Function Relationships 141 8.5 Fractional Calculus Operations on the R3-Trigonometric Functions 146 9 The Fractional Meta-Trigonometry 159 9.1 The FractionalMeta-Trigonometric Functions: Based on Complexity 160 9.2 The Meta-Fractional Trigonometric Functions: Based on Parity 166 9.3 Commutative Properties of the Complexity and Parity Operations 179 9.4 Laplace Transforms of the FractionalMeta-Trigonometric Functions 188 9.5 R-Function Representation of the FractionalMeta-Trigonometric Functions 192 9.6 Fractional Calculus Operations on the Fractional Meta-Trigonometric Functions 195 9.7 Special Topics in Fractional Differintegration 206 9.8 Meta-Trigonometric Function Relationships 206 9.9 Fractional Poles: Structure of the Laplace Transforms 214 9.10 Comments and Issues Relative to the Meta-Trigonometric Functions 214 9.11 Backward Compatibility to Earlier Fractional Trigonometries 215 9.12 Discussion 215 10 The Ratio and Reciprocal Functions 217 10.1 Fractional Complexity Functions 217 10.2 The Parity Reciprocal Functions 219 10.3 The Parity Ratio Functions 221 10.4 R-Function Representation of the Fractional Ratio and Reciprocal Functions 225 10.5 Relationships 226 10.6 Discussion 227 11 Further Generalized Fractional Trigonometries 229 11.1 The G-Function-Based Trigonometry 229 11.2 Laplace Transforms for the G-Trigonometric Functions 230 11.3 The H-Function-Based Trigonometry 234 11.4 Laplace Transforms for the H-Trigonometric Functions 235 12 The Solution of Linear Fractional Differential Equations Based on the Fractional Trigonometry 243 12.1 Fractional Differential Equations 243 12.2 Fundamental Fractional Differential Equations of the First Kind 245 12.3 Fundamental Fractional Differential Equations of the Second Kind 246 12.4 Preliminaries Laplace Transforms 246 12.5 Fractional Differential Equations of Higher Order: Unrepeated Roots 250 12.6 Fractional Differential Equations of Higher Order: Containing Repeated Roots 252 12.7 Fractional Differential Equations Containing Repeated Roots 253 12.8 Fractional Differential Equations of Non-Commensurate Order 254 12.9 Indexed Fractional Differential Equations: Multiple Solutions 255 12.10 Discussion 256 13 Fractional Trigonometric Systems 259 13.1 The R-Function as a Linear System 259 13.2 R-System Time Responses 260 13.3 R-Function-Based Frequency Responses 260 13.4 Meta-Trigonometric Function-Based Frequency Responses 261 13.5 FractionalMeta-Trigonometry 264 13.6 Elementary Fractional Transfer Functions 266 13.7 Stability Theorem 266 13.8 Stability of Elementary Fractional Transfer Functions 267 13.9 Insights into the Behavior of the Fractional Meta-Trigonometric Functions 268 13.10 Discussion 270 14 Numerical Issues and Approximations in the Fractional Trigonometry 271 14.1 R-Function Convergence 271 14.2 The Meta-Trigonometric Function Convergence 272 14.3 Uniform Convergence 273 14.4 Numerical Issues in the Fractional Trigonometry 274 14.5 The R2Cos- and R2Sin-Function Asymptotic Behavior 275 14.6 R-Function Approximations 276 14.7 The Near-Order Effect 279 14.8 High-Precision Software 281 15 The Fractional Spiral Functions: Further Characterization of the Fractional Trigonometry 283 15.1 The Fractional Spiral Functions 283 15.2 Analysis of Spirals 288 15.3 Relation to the Classical Spirals 303 15.4 Discussion 307 16 Fractional Oscillators 309 16.1 The Space of Linear Fractional Oscillators 309 16.2 Coupled Fractional Oscillators 314 17 Shell Morphology and Growth 317 17.1 Nautilus pompilius 317 17.2 Shell 5 329 17.3 Shell 6 330 17.4 Shell 7 332 17.5 Shell 8 332 17.6 Shell 9 336 17.7 Shell 10 336 17.8 Ammonite 339 17.9 Discussion 340 18 Mathematical Classification of the Spiral and Ring Galaxy Morphologies 341 18.1 Introduction 341 18.2 Background Fractional Spirals for Galactic Classification 342 18.3 Classification Process 347 18.4 Mathematical Classification of Selected Galaxies 350 18.5 Analysis 362 18.6 Discussion 367 18.7 Appendix: Carbon Star 370 19 Hurricanes, Tornados, and Whirlpools 371 19.1 Hurricane Cloud Patterns 371 19.2 Tornado Classification 373 19.3 Low-Pressure Cloud Pattern 375 19.4 Whirlpool 375 19.5 Order in Physical Systems 379 20 A Look Forward 381 20.1 Properties of the R-Function 382 20.2 Inverse Functions 382 20.3 The Generalized Fractional Trigonometries 384 20.4 Extensions to Negative Time, Complementary Trigonometries, and Complex Arguments 384 20.5 Applications: Fractional Field Equations 385 20.6 Fractional Spiral and Nonspiral Properties 387 20.7 Numerical Improvements for Evaluation to Larger Values of atq 387 20.8 Epilog 388 A Related Works 389 A.1 Introduction 389 A.2 Miller and Ross 389 A.3 West, Bologna, and Grigolini 390 A.4 Mittag-Leffler-Based Fractional Trigonometric Functions 390 A.5 Relationship to CurrentWork 391 B Computer Code 393 B.1 Introduction 393 B.2 Matlab R-Function 393 B.3 Matlab R-Function Evaluation Program 394 B.4 Matlab Meta-Cosine Function 395 B.5 Matlab Cosine Evaluation Program 395 B.6 Maple 10 Program Calculates Phase Plane Plot for Fractional Sine versus Cosine 396 C Tornado Simulation 399 D Special Topics in Fractional Differintegration 401 D.1 Introduction 401 D.2 Fractional Integration of the Segmented tp-Function 401 D.3 Fractional Differentiation of the Segmented tp-Function 404 D.4 Fractional Integration of Segmented Fractional Trigonometric Functions 406 D.5 Fractional Differentiation of Segmented Fractional Trigonometric Functions 408 E Alternate Forms 413 E.1 Introduction 413 E.2 Reduced Variable Summation Forms 414 E.3 Natural Quency Simplification 415 References 417 Index 425