دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: هندسه و توپولوژی ویرایش: نویسندگان: K.G. Binmore سری: ISBN (شابک) : 9780521299305, 0521299306 ناشر: CUP سال نشر: 1981 تعداد صفحات: 261 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 1 مگابایت
در صورت تبدیل فایل کتاب The foundations of analysis, - Topological ideas به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی تحلیل ، - ایده های توپولوژیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مقدمه ای بر ایده هایی از توپولوژی عمومی است که در تحلیل ابتدایی استفاده می شود. این در سطحی نوشته شده است که در نظر گرفته شده است تا بخش عمده ای از مطالب در دسترس دانشجویان در آخرین سال اول تحصیل آنها در دانشگاه یا کالج باشد، اگرچه دانش آموزان معمولاً در سال دوم یا بعد از آن بیشتر کار را انجام می دهند. هدف این بوده است که شکاف بین کتابهای مقدماتی مانند تحلیل ریاضی نویسنده: رویکردی سرراست، که در آن قضایا با دقت انتخاب شده با مثالهای متعدد بهطور مفصل مورد بحث قرار میگیرند، و کتاب پیشرفتهتر در تجزیه و تحلیل، که در آن نویسنده بیشتر به این موضوع پرداخته است. ارائه یک نظریه جامع و زیبا نسبت به هموار کردن راه برای مبتدیان. تلاش شده است تا نه تنها زمینه برای کارهای پیشرفتهتر فراهم شود، بلکه مطالبی را که دانشآموزان قبلاً ملاقات کردهاند، اما ممکن است کاملاً درک نکرده باشند، تجدید نظر و روشن کنند.
This book is an introduction to the ideas from general topology that are used in elementary analysis. It is written at a level that is intended to make the bulk of the material accessible to students in the latter part of their first year of study at a university or college although students will normally meet most of the work in their second or later years. The aim has been to bridge the gap between introductory books like the author's Mathematical Analysis: A Straightforward Approach, in which carefully selected theorems are discussed at length with numerous examples, and the more advanced book on analysis, in which the author is more concerned with providing a comprehensive and elegant theory than in smoothing the ways for beginners. An attempt has been made throughout not only to prepare the ground for more advanced work, but also to revise and to illuminate the material which students will have met previously but may have not fully understood.
Contents......Page 5
Introduction......Page 11
13.1 The space R^n......Page 13
13.3 Length and angle in R^n......Page 16
13.5 Some inequalities......Page 17
13.11 Distance......Page 19
13.14 Euclidean geometry and R^n......Page 20
13.17 Normed vector spaces......Page 26
13.18 Metric space......Page 27
13.19 Non-Euclidean geometry......Page 28
13.20 Distance between a poin and a se......Page 29
14.2 Boundary of a se......Page 33
14.3 Open balls......Page 34
14.7 Open and closed sets......Page 37
14.15 Open and closed sets in R^n......Page 41
15.1 Interior and closure......Page 43
15.4 Closure properties......Page 44
15.8 Interior properties......Page 45
15.11 Contiguous sets......Page 46
16.2 Continuous functions......Page 51
16.7 The continuity of algebraic operations......Page 53
16.13 Rational functions......Page 56
16.17 Complex-valued functions......Page 58
17.2 Connected sets......Page 59
17.6 Connected sets in R......Page 61
17.8 Continuity and connected sets......Page 62
17.15 Curves......Page 64
17.18 Pathwise connected sets......Page 65
17.21 Components......Page 68
17.25 Structure of open sets in R^n......Page 69
18.1 Cluster points......Page 72
18.4 Properties of cluster points......Page 74
18.9 The Cantor set......Page 75
19.1 Introduction......Page 78
19.2 Chinese boxes......Page 79
19.5 Compac sets and cluster points......Page 81
19.12 Compactness and continuity......Page 85
20.2 Open coverings......Page 89
20.7 Compactness in R"......Page 90
20.15 Completeness......Page 95
20.16 Compactness in general metric spaces......Page 96
20.20 A spherical cube......Page 98
21.1 Topological equivalence......Page 101
21.2 Maps......Page 102
21.3 Homeomorphisms between intervals......Page 103
21.4 Circles and spheres......Page 104
21.6 Continuous functions and open sets......Page 106
21.9 Relative topologies......Page 107
21.15 Introduction to topological spaces......Page 112
21.18 Produc topologies......Page 114
22.1 Introduction......Page 118
22.3 Limits......Page 121
22.4 Limits and continuity......Page 122
22.9 Limits and distance......Page 125
22.12 Righ and lef hand limits......Page 128
22.15 Some notation......Page 130
22.16 Monotone functions......Page 131
22.19 Inverse functions......Page 133
22.23 Roots......Page 135
22.25 Combining limits......Page 137
22.34 Complex functions......Page 140
23.1 Double limits......Page 142
23.5 Repeated limits......Page 144
23.11 Uniform convergence......Page 148
23.12 Distance between functions......Page 150
23.20 Uniform continuity......Page 157
24.1 Introduction......Page 161
24.2 One-poin compactification of the reals......Page 162
24.3 The Riemann sphere and the Gaussian plane......Page 165
24.4 Two-poin compactification of the reals......Page 166
24.5 Convergence and divergence......Page 169
24.8 Combination theorems......Page 175
24.12 Produc spaces......Page 177
25.1 Introduction......Page 181
25.2 Convergence of sequences......Page 182
25.7 Convergence of functions and sequences......Page 184
25.12 Sequences and closure......Page 187
25.18 Subsequences......Page 188
25.23 Sequences and compactness......Page 191
26.1 Divergence......Page 193
26.2 Limi points......Page 194
26.5 Oscillating functions......Page 196
26.11 Lim sup and lim inf......Page 198
27.2 Completeness......Page 202
27.8 Some complete spaces......Page 205
27.13 Incomplete spaces......Page 207
27.16 Completion of metric spaces......Page 209
27.18 Completeness and the continuum axiom......Page 211
28.1 Convergence of series......Page 213
28.8 Power series......Page 216
28.11 I Uniform convergence of series......Page 220
28.151 Series in function spaces......Page 221
28.19 Continuous operators......Page 224
28.26 Applications to power series......Page 227
29.1 Commutative and associative laws......Page 230
29.2 Infinite sums......Page 232
29.4 Infinite sums and series......Page 233
29.9 Complete spaces and the associative law......Page 235
29.17 Absolute sums......Page 238
29.23 Repeated series......Page 242
30.1 Introduction......Page 246
30.4 Separating hyperplanes......Page 247
30.8 Norms and topologies in R^n......Page 251
30.11 Curves and continua......Page 253
30.12 Simple curves......Page 254
30.14 Simply connected regions......Page 255
Notation......Page 257
Index......Page 259