دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات محاسباتی ویرایش: Third edition نویسندگان: Jian-ming Jin سری: ISBN (شابک) : 9781118571361, 1118571363 ناشر: John Wiley & Sons سال نشر: 2014 تعداد صفحات: 0 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 35 مگابایت
کلمات کلیدی مربوط به کتاب روش اجزای محدود در الکترومغناطیسی: ریاضیات، ریاضیات محاسباتی، روش اجزای محدود
در صورت تبدیل فایل کتاب The finite element method in electromagnetics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روش اجزای محدود در الکترومغناطیسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ویرایش جدید کتاب درسی پیشرو در مورد روش اجزای محدود، که شامل پیشرفتهای عمده و کاربردهای بیشتر در زمینه الکترومغناطیسی است. روش اجزای محدود (FEM) یک تکنیک شبیهسازی قدرتمند است که برای حل مسائل ارزش مرزی در شرایط مختلف مهندسی استفاده میشود. به طور گسترده ای برای تجزیه و تحلیل میدان های الکترومغناطیسی در آنتن ها، پراکندگی رادار، مهندسی RF و مایکروویو، مدارهای پرسرعت/فرکانس بالا، ارتباطات بی سیم، سازگاری الکترومغناطیسی، فوتونیک، سنجش از دور، مهندسی زیست پزشکی و اکتشاف فضا استفاده شده است. روش المان محدود در الکترومغناطیس، ویرایش سوم، فرآیندها و تکنیکهای این روش را با نثری دقیق و دقیق توضیح میدهد و نه تنها نظریه روش اجزای محدود ضروری، بلکه آخرین پیشرفتها و کاربردهای آن را نیز پوشش میدهد - به مهندسان روشی روشمند برای تسلط سریع بر این عددی بسیار قدرتمند میدهد. تکنیکی برای حل مسائل عملی، اغلب پیچیده، الکترومغناطیسی. با بیش از سی درصد مطالب جدید، ویرایش سوم این متن ضروری و جامع اکنون شامل موارد زیر است: طیف وسیع تری از کاربردها، از جمله آنتن ها، آرایه های فازی، ماشین های الکتریکی، مدارهای فرکانس بالا و فوتونیک کریستالی تحلیل اجزای محدود انتشار، پراکندگی و تابش موج در ساختارهای تناوبی روش المان محدود حوزه زمان برای تحلیل آنتن های باند پهن و پدیده های الکترومغناطیسی گذرا تکنیکهای جدید تجزیه دامنه برای محاسبات موازی و شبیهسازی کارآمد مسائل در مقیاس بزرگ، مانند آنتنهای آرایه فازی و کریستالهای فوتونی همراه با مثالهای فراوان، روش المان محدود در الکترومغناطیس کتابی ایدهآل برای دانشجویان مهندسی و همچنین برای متخصصان این حوزه است.
A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.
Preface xix Preface to the First Edition xxiii Preface to the Second Edition xxvii 1 Basic Electromagnetic Theory 1 1.1 Brief Review of Vector Analysis 2 1.2 Maxwell's Equations 4 1.3 Scalar and Vector Potentials 6 1.4 Wave Equations 7 1.5 Boundary Conditions 8 1.6 Radiation Conditions 11 1.7 Fields in an Infinite Homogeneous Medium 11 1.8 Huygen's Principle 13 1.9 Radar Cross Sections 14 1.10 Summary 15 2 Introduction to the Finite Element Method 17 2.1 Classical Methods for Boundary-Value Problems 17 2.2 Simple Example 21 2.3 Basic Steps of the Finite Element Method 27 2.4 Alternative Presentation of the Finite Element Formulation 34 2.5 Summary 36 3 One-Dimensional Finite Element Analysis 39 3.1 Boundary-Value Problem 39 3.2 Variational Formulation 40 3.3 Finite Element Analysis 42 3.4 Plane-Wave Reflection by a Metal-Backed Dielectric Slab 53 3.5 Scattering by a Smooth, Convex Impedance Cylinder 59 3.6 Higher-Order Elements 62 3.7 Summary 74 4 Two-Dimensional Finite Element Analysis 77 4.1 Boundary-Value Problem 77 4.2 Variational Formulation 79 4.3 Finite Element Analysis 81 4.4 Application to Electrostatic Problems 98 4.5 Application to Magnetostatic Problems 103 4.6 Application to Quasistatic Problems: Analysis of Multiconductor Transmission Lines 105 4.7 Application to Time-Harmonic Problems 109 4.8 Higher-Order Elements 128 4.9 Isoparametric Elements 144 4.10 Summary 149 5 Three-Dimensional Finite Element Analysis 151 5.1 Boundary-Value Problem 151 5.2 Variational Formulation 152 5.3 Finite Element Analysis 153 5.4 Higher-Order Elements 160 5.5 Isoparametric Elements 162 5.6 Application to Electrostatic Problems 168 5.7 Application to Magnetostatic Problems 169 5.8 Application to Time-Harmonic Field Problems 176 5.9 Summary 188 6 Variational Principles for Electromagnetics 191 6.1 Standard Variational Principle 192 6.2 Modified Variational Principle 197 6.3 Generalized Variational Principle 201 6.4 Variational Principle for Anisotrpic Medium 203 6.5 Variational Principle for Resistive Sheets 207 6.6 Concluding Remarks 209 7 Eigenvalue Problems: Waveguides and Cavities 211 7.1 Scalar Formulations for Closed Waveguides 212 7.2 Vector Formulations for Closed Waveguides 225 7.3 Open Waveguides 235 7.4 Three-Dimensional Cavities 238 7.5 Summary 239 8 Vector Finite Elements 243 8.1 Two-Dimensional Edge Elements 244 8.2 Waveguide Problem Revisited 256 8.3 Three-Dimensional Edge Elements 259 8.4 Cavity Problem Revisited 270 8.5 Waveguide Discontinuities 274 8.6 Higher-Order Interpolatory Vector Elements 278 8.7 Higher-Order Hierarchical Vector Elements 293 8.8 Computational Issues 305 8.9 Summary 309 9 Absorbing Boundary Conditions 315 9.1 Two-Dimensional Absorbing Boundary Conditions 316 9.2 Three-Dimensional Absorbing Boundary Conditions 323 9.3 Scattering Analysis Using Absorbing Boundary Conditons 328 9.4 Adaptive Absorbing Boundary Conditons 339 9.5 Fictitious Absorbers 348 9.6 Perfectly Matched Layers 350 9.7 Application of PML to Body-of-Revolutions Problems 368 9.8 Summary 371 10 Finite Element-Boundary Integral Methods 379 10.1 Scattering by Two-Dimensional Cavity-Backed Apertures 381 10.2 Scattering by Two-Dimensional Cylindrical Structures 399 10.3 Scattering by Three-Dimensional Cavity-Backed Apertures 411 10.4 Radiation by Microstrip Patch Antennas in a Cavity 425 10.5 Scattering by General Three-Dimensional Bodies 430 10.6 Solution of the Finite Element-Boundary Integral System 436 10.7 Symmetric Finite Element-Boundary Integral Formulations 447 10.8 Summary 462 11 Finite Element-Eigenfunction Expansion Methods 469 11.1 Waveguide Port Boundary Conditions 470 11.2 Open-Region Scattering 487 11.3 Coupled Basis Functions: The Unimoment Method 494 11.4 Finite Element-Extended Boundary Condition Method 502 11.5 Summary 509 12 Finite Element Analysis in the Time Domain 513 12.1 Finite Element Formulation and Temporal Excitation 514 12.2 Time-Domain Discretization 518 12.3 Stability Analysis 523 12.4 Modeling of Dispersive Media 529 12.5 Truncation via Absorbing Boundary Conditions 538 12.6 Truncation via Perfectly Matched Layers 541 12.7 Truncation via Boundary Integral Equations 551 12.8 Time-Domain Wqaveguide Port Boundary Conditions 562 12.9 Hybrid Field-Circuit Analysis 569 12.10 Dual-Field Domain Decomposition and Element-Level Methods 587 12.11 Discontinuous Galerkin Time-Domain Methods 605 12.12 Summary 625 13 Finite Element Analysis of Periodic Structures 637 13.1 Finite Element Formulation for a Unit Cell 638 13.2 Scattering by One-Dimensional Periodic Structures: Frequency-Domain Analysis 651 13.3 Scattering by One-Dimensional Periodic Structures: Time-Domain Analysis 656 13.4 Scattering by Two-Dimensional Periodic Structures: Frequency-Domain Analysis 663 13.5 Scattering by Two-Dimensonal Periodic Structures: Time-Domain Analysis 670 13.6 Analysis of Angular Periodic Strctures 678 13.7 Summary 682 14 Domain Decompsition for Large-Scale Analysis 687 14.1 Schwarz Methods 688 14.2 Schur Complement Methods 693 14.3 FETI-DP Method for Low-Frequency Problems 705 14.4 FETI-DP Method for High-Frequency Problems 728 14.5 Noncomformal FETI-DP Method Based on Cement Elements 743 14.6 Application of Second-Order Transmission Conditions 753 14.7 Summary 760 15 Solution of Finite Element Equations 767 15.1 Decomposition Methods 769 15.2 Conjugate Gradient Methods 778 15.3 Solution of Eigenvalue Problems 791 15.4 Fast Frequency-Sweep Computation 797 15.5 Summary 803 Appendix A: Basic Vector Identities and Integral Theorems 809 Appendix B: The Ritz Procedure for Complex-Valued Problems 813 Appendix C: Green's Functions 817 Appendix D: Singular Integral Evaluation 825 Appendix E: Some Special Functions 829 Index 837