دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3
نویسندگان: HERVE LEFE'VRE
سری:
ISBN (شابک) : 9781630818623, 1630818623
ناشر: ARTECH HOUSE
سال نشر: 2022
تعداد صفحات: 509
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 32 مگابایت
در صورت تبدیل فایل کتاب the FIBER-OPTIC GYROSCOPE. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ژیروسکوپ فیبر نوری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
The Fiber-Optic Gyroscope, Third Edition Contents Foreword Preface to the First Edition Preface to the Second Edition Preface to the Third Edition Chapter 1 Introduction References Chapter 2 Principle of the Fiber-Optic Gyroscope 2.1 Sagnac-Laue Effect 2.1.1 A History of Optics from Aether to Relativity 2.1.2 Sagnac-Laue Effect in a Vacuum 2.1.3 Sagnac-Laue Effect in a Medium 2.2 Active and Passive Ring Resonators 2.2.1 Ring-Laser Gyroscope 2.2.2 Resonant Fiber-Optic Gyroscope 2.3 Passive Fiber-Ring Interferometer 2.3.1 Principle of the Interferometric Fiber-Optic Gyroscope 2.3.2 Theoretical Sensitivity of the I-FOG 2.3.3 Noise, Drift, and Scale Factor 2.3.4 ARW Versus Root PSD 2.3.5 Evaluation of Noise and Drift by Allan Variance (or Allan Deviation) 2.3.6 Allan Variance/Deviation Versus Standard Variance/Deviation 2.3.7 Bandwidth 2.3.8 Various Functions of a Gyro: Attitude Measurement, Gyro Compassing,and Inertial Navigation References Chapter 3 Reciprocity of a Fiber Ring Interferometer 3.1 Principle of Reciprocity 3.1.1 Single-Mode Reciprocity of Wave Propagation 3.1.2 Reciprocal Behavior of a Beam Splitter 3.2 Minimum Configuration of a Ring Fiber Interfero 3.2.1 Reciprocal Configuration 3.2.2 Reciprocal Biasing Modulation-Demodulation 3.2.3 Proper (or Eigen) Frequency 3.3 Reciprocity with All-Guided Schemes 3.3.1 Evanescent-Field Coupler (or X-Coupler or Four-Port Coupler) 3.3.2 Y-Junction 3.3.3 All-Fiber Approach 3.3.4 Hybrid Architectures with Integrated Optics:Y-Coupler Configuration 3.4 Problem of Polarization Reciprocity 3.4.1 Rejection Requirement with Ordinary Single-Mode Fiber 3.4.2 Use of Polarization-Maintaining (PM) Fiber 3.4.3 Use of Depolarizer 3.4.4 Use of an Unpolarized Source References Chapter 4 Backreflection and Backscattering 4.1 Problem of Backreflection 4.1.1 Reduction of Backreflection with Slant Interfaces 4.1.2 Influence of Source Coherence 4.2 Problem of Backscattering 4.2.1 Coherent Backscattering 4.2.2 Use of a Broadband Source 4.2.3 Evaluation of the Residual Rayleigh Backscattering Noise References Chapter 5 Analysis of PolarizationNonreciprocities with BroadbandSource and High-BirefringencePolarization-Maintaining Fiber 5.1 Depolarization Effect in High-BirefringencePolarization-Maintaining Fibers 5.2 Analysis of Polarization Nonreciprocities in a Fiber GyroscopeUsing an All-Polarization-Maintaining Waveguide Configuration 5.2.1 Intensity-Type Effects 5.2.2 Comment About Length of Depolarization Ld Versus Length ofPolarization Correlation Lpc 5.2.3 Amplitude-Type Effects 5.3 Use of a Depolarizer 5.4 Testing with Optical Coherence Domain Polarimetry (OCDP), orToday, Distributed Polarization Crosstalk Analysis (DPXA) 5.4.1 OCDP, or DPXA, Based on Path-Matched White-Light Interferometry 5.4.2 OCDP/DPXA Using Optical Spectrum Analysis References Chapter 6 Time-Transience Related Nonreciprocal Effects 6.1 Effect of Temperature Transience: The Shupe Effect 6.2 Symmetrical Windings 6.3 Strain-Induced T-Dot Effect 6.4 Basics of Heat Diffusion and Temporal Signature of the Shupe and T-Dot Effects 6.5 Case of a Sinusoidal Temperature Variation 6.6 Simple Model of Thermally-Induced Differential Strainsin a Self-Standing Coil 6.6.1 Reminders About the Theory of Elasticity 6.6.2 Effect of the Fiber Coating 6.6.3 Simple Model of a Free-Standing Coil 6.7 Simple Viewing of Symmetrical Windings with the Thermally-Induced Differential Strains 6.8 Orthocyclic Winding for Hexagonal Close Packing 6.9 Effect of Acoustic Noise and Vibration References Chapter 7 Truly Nonreciprocal Effects 7.1 Magneto-Optic Faraday Effect 7.2 Axial Magneto-Optic Effect 7.3 Nonlinear Kerr Effect References Chapter 8 Scale Factor Linearity and Accuracy 8.1 Problem of Scale Factor Linearity and Accuracy 8.2 Closed-Loop Operation Methods to Linearize Scale Factor 8.2.1 Use of a Frequency Shift 8.2.2 Use of an Analog Phase Ramp (or Serrodyne Modulation) 8.2.3 Use of a Digital Phase Ramp 8.2.4 All-Digital Closed-Loop Processing Method 8.2.5 Control of the Gain of the Modulation Chain with “Four-State”Modulation 8.2.6 Potential Spurious Lock-In (or Deadband) Effect 8.3 Scale Factor Accuracy 8.3.1 Problem of Scale Factor Accuracy 8.3.2 Wavelength Dependence of an Interferometer Response with a Broadband Source 8.3.3 Effect of Phase Modulation 8.3.4 Wavelength Control Schemes 8.3.5 Mean Wavelength Change with a Parasitic Interferometeror Polarimeter References Chapter 9 Recapitulation of the Optimal Operating Conditions and Technologies of the I-FOG 9.1 Optimal Operating Conditions 9.2 Broadband Source 9.2.1 Superluminescent Diode 9.2.2 Rare-Earth Doped Fiber ASE Sources 9.2.3 Excess RIN Compensation Techniques 9.3 Sensing Coil 9.4 “Heart” of the Interferometer 9.5 Detector and Processing Electronics 9.6 Summary of the Various Noises 9.7 Thermal Phase Noise (Optical Nyquist Noise) References Chapter 10 Alternative Approaches for the I-FOG 10.1 Alternative Optical Configurations 10.1.1 Use of a [3 × 3] Coupler 10.1.2 Use of a Quarter-Wave Plate 10.1.3 Use of a Laser Diode 10.2 Alternative Signal Processing Schemes 10.2.1 Open-Loop Scheme with Use of Multiple Harmonics 10.2.2 Second Harmonic Feedback 10.2.3 Gated Phase Modulation Feedback 10.2.4 Heterodyne and Pseudo-Heterodyne Schemes 10.2.5 Beat Detection with Phase Ramp Feedback 10.2.6 Dual Phase Ramp Feedback 10.3 Extended Dynamic Range with Multiple Wavelength Source References Chapter 11 Resonant Fiber-Optic Gyroscope 11.1 Principle of Operation of an All-Fiber Ring Cavity 11.2 Signal Processing Method 11.3 Reciprocity of a Ring Fiber Cavity 11.3.1 Introduction 11.3.2 Basic Reciprocity Within the Ring Resonator 11.3.3 Excitation and Detection of Resonances in a Ring Resonator 11.4 Other Parasitic Effects in the R-FOG Acknowledgment References Chapter 12 Conclusions 12.1 The State of Development and Expectations in 1993 12.2 The State of the Art, Two Decades Later, in 2014, for the Second Edition 12.2.1 FOG Versus RLG 12.2.2 FOG Manufacturers, in 2014 12.3 The State of the Art, Today, in 2021 12.4 Trends for the Future and Concluding Remarks References Appendix A Fundamentals of Opticsfor the Fiber Gyroscope A.1 Basic Parameters of an Optical Wave: Wavelength,Frequency, and Power A.2 Spontaneous Emission, Stimulated Emission, and Related Noises A.2.1 Fundamental Photon Noise A.2.2 Spontaneous Emission and Excess Relative Intensity Noise A.2.3 Resonant Stimulated Emission in a Laser Source A.2.4 Amplified Spontaneous Emission A.3 Propagation Equation in a Vacuum A.4 State of Polarization of an Optical Wave A.5 Propagation in a Dielectric Medium A.5.1 Index of Refraction A.5.2 Chromatic Dispersion, Group Velocity, and Group Velocity Dispersion A.5.3 E and B, or E and H? A.6 Dielectric Interface A.6.1 Refraction, Partial Reflection, and Total Internal Reflection A.6.2 Dielectric Planar Waveguidance A.7 Geometrical Optics A.7.1 Rays and Phase Front A.7.2 Plane Mirror and Beam Splitte A.7.3 Lenses A.8 Interferences A.8.1 Principle of Two-Wave Interferometry A.8.2 Most Common Two-Wave Interferometers:Michelson and Mach-Zehnder Interferometers, Young Double-Slit A.8.3 Channeled Spectral Response of a Two-Wave Interferometer A.9 Multiple-Wave Interferences A.9.1 Fabry-Perot Interferometer A.9.2 Ring Resonant Cavi A.9.3 Multilayer Dielectric Mirror and Bragg Reflector A.9.4 Bulk-Optic Diffraction Grating A.10 Diffraction A.10.1 Fresnel Diffraction and Fraunhofer Diffraction A.10.2 Knife-Edge Fresnel Diffraction A.11 Gaussian Beam A.12 Coherence A.12.1 Basics of Coherence A.12.2 Mathematical Derivation of Temporal Coherence A.12.3 Concept of Wave Train A.12.4 Case of an Asymmetrical Spectrum A.12.5 Case of Propagation in a Dispersive Medium A.13 Birefringence A.13.1 Birefringence Index Difference A.13.2 Change of Polarization with Birefringence A.13.3 Interference with Birefringence A.14 Optical Spectrum Analysis Bibliography Appendix B Fundamentals of Fiber-Optics for the Fiber-Gyroscope B.1 Main Characteristics of a Single-Mode Optical Fiber B.1.1 Attenuation of a Silica Fiber B.1.2 Gaussian Profile of the Fundamental Mode B.1.3 Beat Length and h Parameter of a PM Fiber B.1.4 Protective Coating B.1.5 Temperature Dependence of Propagation in a PM Fiber B.2 Discrete Modal Guidance in a Step-Index Fiber B.3 Guidance in a Single-Mode Fiber B.3.1 Amplitude Distribution of the Fundamental LP01 Mode B.3.2 Effective Index neff and Phase Velocity vϕ of the Fundamental LP01 Mode B.3.3 Group Index ng of the Fundamental LP01 Mode B.3.4 Case of a Parabolic Index Profile B.3.5 Modes of a Few-Mode Fiber B.4 Coupling in a Single-Mode Fiber and Its Loss Mechanisms B.4.1 Free-Space Coupling B.4.2 Misalignment Coupling Losses B.4.3 Mode-Diameter Mismatch Loss of LP01 Mode B.4.4 Mode Size Mismatch Loss of LP11 and LP21 Modes B.5 Birefringence in a Single-Mode Fiber B.5.1 Shape-Induced Linear Birefringence B.5.2 Stress-Induced Linear and Circular Birefringence B.5.3 Combination of Linear and Circular Birefringence Effects B.6 Polarization-Maintaining Fibers B.6.1 Principle of Conservation of Polarization B.6.2 Residual Polarization Crossed-Coupling B.6.3 Depolarization of Crossed-Coupling with a Broadband Source B.6.4 Polarization Mode Dispersion B.6.5 Polarizing Fiber B.7 All-Fiber Components B.7.1 Evanescent-Field Coupler and Wavelength Multiplexer B.7.2 Piezoelectric Phase Modulator B.7.3 Polarization Controller B.7.4 Lyot Depolarizer B.7.5 Fiber Bragg Grating B.8 Pigtailed Bulk-Optic Components B.8.1 General Principle B.8.2 Optical Isolator B.8.3 Optical Circulator B.9 Rare-Earth–Doped Amplifying Fiber B.10 Microstructured Optical Fiber B.11 Nonlinear Effects in Optical Fibers Bibliography Appendix C Fundamentals of Integrated Opticsfor the Fiber-Gyroscope C.1 Principle and Basic Functions of LiNbO3 Integrated Optics C.1.1 Channel Waveguide C.1.2 Coupling Between an Optical Fiber and an Integrated-Optic Waveguide C.1.3 Fundamental Mode Profile and Equivalence with an LP11 Fiber Mode C.1.4 Mismatch Coupling Attenuation Between a Fiber and a Waveguide C.1.5 Low-Driving–Voltage Phase Modulator C.1.6 Beam Splitting C.1.7 Polarization Rejection and Birefringence-Induced Depolarization C.2 Ti-Indiffused LiNbO3 Integrated Optics C.2.1 Ti-Indiffused Channel Waveguide C.2.2 Phase Modulation and Metallic-Overlay Polarizer with Ti-Indiffused Waveguide C.3 Proton-Exchanged LiNbO3 Integrated Optics C.3.1 Single-Polarization Propagation C.3.2 Phase Modulation in Proton-Exchanged Waveguide C.3.3 Theoretical Polarization Rejection of a Proton-ExchangedLiNbO3 Circuit C.3.4 Practical Polarization Rejection of Proton-Exchanged LiNbO3 Circuit C.3.5 Improved Polarization Rejection with Absorbing Grooves Bibliography Appendix D Electromagnetic Theory of the Relativistic Sagnac Effect D.1 Special Relativity and Electromagnetism D.2 Electromagnetism in a Rotating Frame D.3 Case of a Rotating Toroidal Dielectric Waveguide Bibliography Appendix E Basics of Inertial Navigation E.1 Introduction E.2 Inertial Sensors E.2.1 Accelerometers (Acceleration Sensors) E.2.2 Gyroscopes (Rotation-Rate Sensors) E.2.3 Classification of Inertial Sensor Performance E.3 Navigation Computation E.3.1 A Bit of Geodesy E.3.2 Reference Frame E.3.3 Orientation, Velocity, and Position Computation E.3.4 Altitude Computation E.4 Attitude and Heading Initialization E.4.1 Attitude Initialization E.4.2 Heading Initialization E.5 Velocity and Position Initialization E.6 Orders of Magnitude to Remember Bibliography List of Abbreviations List of Symbols About the Author Index