دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فیزیک ویرایش: 1 نویسندگان: Andreas Kirsch. Natalia Grinberg سری: Oxford lecture series in mathematics and its applications 36 ISBN (شابک) : 0199213534, 9781435631083 ناشر: Oxford University Press سال نشر: 2008 تعداد صفحات: 216 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 2 مگابایت
در صورت تبدیل فایل کتاب The factorization method for inverse problems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روش فاکتور برای مشکلات معکوس نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
روش فاکتورسازی روشی نسبتاً جدید برای حل انواع خاصی از مسائل پراکندگی معکوس در توموگرافی است. این متن با هدف دانشجویان و محققان ریاضیات کاربردی، فیزیک و مهندسی، خواننده را با این رویکرد امیدوارکننده برای حل کلاسهای مهم مسائل معکوس آشنا میکند. کاربرد گسترده این روش با انتخاب نمونههای معمولی، مانند مسائل پراکندگی معکوس برای معادله هلمهولتز اسکالر، مسئله پراکندگی برای معادله ماکسول، و مشکل در امپدانس و توموگرافی نوری مورد بحث قرار میگیرد. بخش آخر کتاب، روش فاکتورسازی را با روشهای نمونهگیری ثابت مقایسه میکند (روش نمونهگیری خطی، روش منفرد، و روش کاوشگر)
The factorization method is a relatively new method for solving certain types of inverse scattering problems in tomography. Aimed at students and researchers in Applied Mathematics, Physics, and Engineering, this text introduces the reader to this promising approach for solving important classes of inverse problems. The wide applicability of this method is discussed by choosing typical examples, such as inverse scattering problems for the scalar Helmholtz equation, a scattering problem for Maxwell's equation, and a problem in impedance and optical tomography. The last section of the book compares the Factorization Method to established sampling methods (the Linear Sampling Method, the Singular Method, and the Probe Method)
Contents......Page 14
Preface......Page 6
1 The simplest cases: Dirichlet and Neumann boundary conditions......Page 16
1.1 The Helmholtz equation in acoustics......Page 17
1.2 The direct scattering problem......Page 19
1.3 The far field patterns and the inverse problem......Page 22
1.4 Factorization methods......Page 28
1.4.1 Factorization of the far field operator......Page 30
1.4.2 The inf-criterion......Page 34
1.4.3 The (F*F)[sup(1/4)] -method......Page 37
1.5 An explicit example......Page 44
1.6 The Neumann boundary condition......Page 46
1.7 Additional remarks and numerical examples......Page 50
2.1 The direct scattering problem with impedance boundary conditions......Page 55
2.2 The obstacle reconstruction by the inf-criterion......Page 64
2.3 Reconstruction from limited data......Page 67
2.4 Reconstruction from near field data......Page 69
2.5.1 The functional analytic background......Page 72
2.5.2 Applications to some inverse scattering problems......Page 77
2.6 Obstacle scattering in a half-space......Page 78
2.6.1 The direct scattering problem......Page 80
2.6.2 The factorization method for the inverse problem......Page 82
3.1 The direct scattering problem......Page 85
3.2 Factorization of the far field operator......Page 91
3.3 Application of the F[sub(#)] – factorization method......Page 94
4.1 The MUSIC algorithm......Page 101
4.2 Scattering by an inhomogeneous medium......Page 106
4.3 Factorization of the far field operators......Page 110
4.4 Localization of the support of the contrast......Page 112
4.5 The interior transmission eigenvalue problem......Page 117
5.1 Maxwell’s equations......Page 124
5.2 The direct scattering problem......Page 126
5.3 Factorization of the far field operator......Page 138
5.4 Localization of the support of the contrast......Page 140
5.5 The interior transmission eigenvalue problem......Page 148
6.1 Derivation of the models......Page 156
6.2 The Neumann-to-Dirichlet operator and the inverse problem......Page 157
6.3 Factorization of the Neumann-to-Dirichlet operator......Page 163
6.4 Characterization of the inclusion......Page 165
7.1 Two approximation results......Page 174
7.2 The dual space method and the linear sampling method......Page 178
7.3 The singular sources method......Page 186
7.4.1 The probe method in impedance tomography......Page 191
7.4.2 The probe method for the inverse scattering problem with mixed boundary conditions......Page 198
Bibliography......Page 204
Index......Page 214
H......Page 215
W......Page 216