دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Stephanie K. Ashenden (editor)
سری:
ISBN (شابک) : 0128200456, 9780128200452
ناشر: Academic Press
سال نشر: 2021
تعداد صفحات: 264
[247]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 Mb
در صورت تبدیل فایل کتاب The Era of Artificial Intelligence, Machine Learning, and Data Science in the Pharmaceutical Industry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب عصر هوش مصنوعی، یادگیری ماشین و علم داده در صنعت داروسازی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
عصر هوش مصنوعی، یادگیری ماشین و علم داده در صنعت داروسازی فرآیند کشف دارو را بررسی میکند و ارزیابی میکند که چگونه فناوریهای جدید اثربخشی را بهبود بخشیدهاند. هوش مصنوعی و یادگیری ماشین آینده طیف وسیعی از رشتهها و صنایع از جمله صنعت داروسازی محسوب میشوند. در محیطی که تولید یک داروی تایید شده میلیونها هزینه دارد و سالها آزمایش دقیق قبل از تایید آن طول میکشد، کاهش هزینهها و زمان بسیار مورد توجه است. این کتاب سفری را که یک شرکت دارویی در هنگام تولید یک دارو طی می کند، از همان ابتدا تا در نهایت به نفع زندگی بیمار دنبال می کند.
این منبع جامع برای کسانی که در صنعت داروسازی کار می کنند مفید خواهد بود، اما همچنین مفید خواهد بود. برای هر کسی که در زمینه زیست شناسی شیمیایی، شیمی محاسباتی، شیمی دارویی و بیوانفورماتیک تحقیق می کند، جالب باشد.
The Era of Artificial Intelligence, Machine Learning and Data Science in the Pharmaceutical Industry examines the drug discovery process, assessing how new technologies have improved effectiveness. Artificial intelligence and machine learning are considered the future for a wide range of disciplines and industries, including the pharmaceutical industry. In an environment where producing a single approved drug costs millions and takes many years of rigorous testing prior to its approval, reducing costs and time is of high interest. This book follows the journey that a drug company takes when producing a therapeutic, from the very beginning to ultimately benefitting a patient’s life.
This comprehensive resource will be useful to those working in the pharmaceutical industry, but will also be of interest to anyone doing research in chemical biology, computational chemistry, medicinal chemistry and bioinformatics.
Front Matter Copyright Contributors Preface Acknowledgments and conflicts of interest Introduction to drug discovery The drug discovery process Target identification Target validation Hit identification and lead discovery Virtual screening Compound libraries High-throughput screening Structure-based drug discovery Fragment-based drug discovery Phenotypic drug discovery Natural products Lead optimization Modeling in lead optimization Precision medicine Clinical testing and beyond References Introduction to artificial intelligence and machine learning Supervised learning Unsupervised learning Semisupervised learning Model selection Types of data Other key considerations Feature generation and selection Censored and missing data Dependencies in the data: Time series or sequences, spatial dependence Deep learning Uncertainty quantification Bayesian inference References Data types and resources Notes on data Omics data Genomics Transcriptomics Metabolomics and lipomics Proteomics Chemical compounds SDF format InChI and InChI Key format SMILES and SMARTS format Fingerprint format Other descriptors Similarity measures QSAR with regards to safety Data resources Toxicity related databases Drug safety databases Key public data-resources for precision medicine Resources for enabling the development of computational models in oncology Key genomic/epigenomic resources for therapeutic areas other than oncology Resources for accessing metadata and analysis tools References Target identification and validation Introduction Target identification predictions Gene prioritization methods Machine learning and knowledge graphs in drug discovery Introduction Graph theory algorithms Graph-oriented machine learning approaches Feature extraction from graph Graph-specific deep network architectures Drug discovery knowledge graph challenges Data, data mining, and natural language processing for information extraction What is natural language processing How is it used for drug discovery and development Where is it used in drug discovery and development (and thoughts on where it is going at the end) References Hit discovery Chemical space Screening methods High-throughput screening Computer-aided drug discovery De novo design Virtual screening Data collection and curation Databases and access Compounds Targets Activity measurement Cleaning collected data—Best practices Representing compounds to machine learning algorithms Candidate learning algorithms Naive Bayes k-Nearest neighbors Support vector machines Random forests Artificial neural networks Multitask deep neural networks Future directions: Learned descriptors and proteochemometric models Graph convolutional and message passing neural networks Proteochemometric models Evaluating virtual screening models Train-test splits: Random, temporal, or cluster-based? External validation Prospective experimental validation Clustering in hit discovery Butina clustering K-means clustering Hierarchical clustering References Lead optimization What is lead optimization Applications of machine learning in lead optimization Assessing ADMET and biological activities properties Matched molecular pairs Machine learning with matched molecular pairs References Evaluating safety and toxicity Introduction to computational approaches for evaluating safety and toxicity In silico nonclinical drug safety Machine learning approaches to toxicity prediction k-nearest neighbors Logistic regression Svm Decision tree Random forest and other ensemble methods Naïve Bayes classifier Clustering and primary component analysis Deep learning Pharmacovigilance and drug safety Data sources Disproportionality analysis Mining medical records Electronic health records Social media signal detection Knowledge-based systems, association rules, and pattern recognition Conclusions References Precision medicine Cancer-targeted therapy and precision oncology Personalized medicine and patient stratification Methods for survival analysis Finding the “right patient”: Data-driven identification of disease subtypes Subtypes are the currency of precision medicine The nature of clusters and clustering Selection and preparation of data Approaches to clustering and classification Unsupervised and supervised partitional classification Hierarchical classification Biclustering Clustering trajectories and time series Integrative analysis Deep approaches Validation and interpretation Direct validation Indirect validation Characterization Key advances in healthcare AI driving precision medicine Key challenges for AI in precision medicine References Image analysis in drug discovery Cells Spheroids Microphysiological systems Ex vivo tissue culture Animal models Tissue pathology Aims and tasks in image analysis Image enhancement Image segmentation Region segmentation in digital pathology Why is it used? The reduction in time to build acute models compared with rule-based solutions is significant Reduction in pathologist and scientist time doing manual aspects of annotation and analysis Consistency of decision making (inter and intrauser error) Feature extraction Image classification Limitations and barriers to using DL in image analysis The status of imaging and artificial intelligence in human clinical trials for oncology drug development Computational pathology image analysis Radiology image analysis AI-based radiomics to predict response to therapy Protein kinase inhibitors Chemotherapy/chemoradiotherapy Immunotherapy Challenges in applying radiomics to drug discovery Clinical trial validation Regulatory approval Distribution and reimbursement Conclusion Future directions Imaging for drug screening Computational pathology and radiomics References Clinical trials, real-world evidence, and digital medicine Introduction The importance of ethical AI Clinical trials Site selection Recruitment modeling for clinical trials Recruitment start dates The Poisson Gamma model of trial recruitment Nonhomogeneous recruitment rates Applications of recruitment modeling in the clinical supply chain Clinical event adjudication and classification Identifying predictors of treatment response using clinical trial data Real-world data: Challenges and applications in drug development The RWD landscape Barriers for adoption of RWD for clinical research Data quality Interoperability Use of RWE/RWD in clinical drug development and research Concluding thoughts on RWD Sensors and wearable devices Sample case study: Parkinson’s disease Standards and regulations and concluding thoughts Conclusions References Beyond the patient: Advanced techniques to help predict the fate and effects of pharmaceuticals in the environment Overview Background Current European and US legislation for environmental assessment of pharmaceuticals Animal testing for protecting the environment Issues for database creation Opportunities to refine animal testing for protecting the environment Current approaches to predicting uptake of pharmaceuticals What makes pharmaceuticals special? Why do pharmaceuticals effect wildlife? What happens in the environment? Predicting uptake using ML Regional issues and the focus of concern Intelligent regulation—A future state of automated AI assessment of chemicals Key points for future development References Index A B C D E F G H I J K L M N O P Q R S T U V W X Y