دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: John H. S. Lee
سری:
ISBN (شابک) : 0521897238, 9780511415296
ناشر:
سال نشر: 2008
تعداد صفحات: 402
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب The Detonation Phenomenon به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پدیده انفجار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به معرفی پدیده انفجار در مواد منفجره می پردازد. برای مهندسین و دانشجویان فارغ التحصیل با پیشینه ترمودینامیک و مکانیک سیالات ایده آل است. این مطالب عمدتاً کیفی است و هدف آن نشان دادن جنبه های فیزیکی پدیده است. نظریه های ایده آل کلاسیک امواج انفجار ابتدا ارائه شده است. این اجازه می دهد تا سرعت انفجار، خواص گاز در جلو و پشت موج انفجار، و توزیع خواص سیال در خود موج انفجار مشخص شود. فصول بعدی به تفصیل ساختار ناپایدار واقعی یک موج انفجاری را تشریح می کند. شبیه سازی های کامپیوتری یک، دو و سه بعدی همراه با نتایج تجربی با استفاده از تکنیک های تجربی مختلف ارائه شده است. اثرات مهم محدودیت و شرایط مرزی و تأثیر آنها بر انتشار یک انفجار نیز مورد بحث قرار می گیرد. فصول پایانی روشهای مختلف شکلگیری امواج انفجار را پوشش میدهد و مروری بر مشکلات برجسته و جهتگیریهای آینده در تحقیقات انفجار ارائه میکند.
This book introduces the detonation phenomenon in explosives. It is ideal for engineers and graduate students with a background in thermodynamics and fluid mechanics. The material is mostly qualitative, aiming to illustrate the physical aspects of the phenomenon. Classical idealized theories of detonation waves are presented first. These permit detonation speed, gas properties ahead and behind the detonation wave, and the distribution of fluid properties within the detonation wave itself to be determined. Subsequent chapters describe in detail the real unstable structure of a detonation wave. One-, two-, and three-dimensional computer simulations are presented along with experimental results using various experimental techniques. The important effects of confinement and boundary conditions and their influence on the propagation of a detonation are also discussed. The final chapters cover the various ways detonation waves can be formed and provide a review of the outstanding problems and future directions in detonation research.
Cover......Page 1
Half-title......Page 3
Title......Page 5
Copyright......Page 6
Contents......Page 9
Preface......Page 13
1.1 Deflagrations and Detonations......Page 15
1.2 Discovery of the Detonation Phenomenon......Page 18
1.3 Chapman–Jouguet Theory......Page 19
1.4 The Detonation Structure......Page 21
1.5 Dynamics of the Detonation Products......Page 24
1.6 Stability of the Detonation Front......Page 25
1.7 Influence of Boundary Conditions......Page 26
1.8 Deflagration-to-Detonation Transition (DDT)......Page 29
1.9 Direct Initiation......Page 31
1.10 Outstanding Problems......Page 33
Bibliography......Page 36
2.1 Introduction......Page 40
2.2 Basic Equations......Page 41
2.3 Rayleigh Line and Hugoniot Curve......Page 43
2.4 The Tangency (Chapman–Jouguet) Solutions......Page 46
2.5 Entropy Variation along the Hugoniot Curve......Page 49
2.6 Downstream Flow Conditions......Page 50
2.7 The Chapman–Jouguet Criterion......Page 52
2.8 Rankine–Hugoniot Relations......Page 56
2.9 Deflagrations......Page 60
2.10 Closing Remarks......Page 64
Bibliography......Page 66
3.1 Introduction......Page 67
3.2 Basic Equations......Page 68
3.3 Diverging Cylindrical and Spherical CJ Detonations......Page 71
3.4 Piston Motion behind Diverging Detonations......Page 73
3.5 Diverging Detonations in a Nonuniform Medium......Page 79
3.6 Closing Remarks......Page 85
Bibliography......Page 86
4.1 Introduction......Page 87
4.2 The ZND Structure for an Ideal Gas......Page 89
4.3 Pathological Detonations......Page 97
4.4 Nonideal Detonations......Page 103
4.5 Closing Remarks......Page 109
Bibliography......Page 111
5.1 INTRODUCTION......Page 112
5.3 Normal-Mode Linear Analysis......Page 113
5.4 Asymptotic Modeling of Unstable Detonation......Page 115
5.5 High Activation Energy and the Newtonian Limit......Page 116
5.6 Asymptotic Analysis of Multidimensional Instabilities......Page 117
5.8 Asymptotic Limit of Weak Heat Release......Page 119
5.9 Direct Numerical Simulation of Unstable Detonation......Page 120
5.10 One-Dimensional Instability (One-Step Reaction Rate Model)......Page 122
5.11 Effect of Chemistry on Stability......Page 132
5.12 Two-Dimensional Cellular Instability......Page 142
5.13 Closing Remarks......Page 153
Bibliography......Page 155
6.1 Introduction......Page 161
6.2 The Spinning Detonation Phenomenon......Page 162
6.3 The Manson–Taylor–Fay–Chu Acoustic Theory of Spinning Detonation......Page 166
6.4 Structure of the Spinning Detonation Front......Page 171
6.5 Multiheaded Detonations......Page 184
6.6 Cellular Structure in Other Geometries......Page 192
6.7 Cell Size and Chemistry......Page 208
6.8 Closing Remarks......Page 213
Bibliography......Page 215
7.1 INTRODUCTION......Page 218
7.2 Velocity Deficit......Page 219
7.3 Detonations in Rough-Walled Tubes......Page 228
7.4 Acoustically Absorbing Walls......Page 241
7.5 Detonation Limits......Page 249
7.6 Closing Remarks......Page 259
Bibliography......Page 261
8.1 Introduction......Page 264
8.2 Gasdynamics of Deflagration Waves......Page 266
8.3 Salient Features of the Transition Phenomenon......Page 272
8.4 Flame Acceleration Mechanisms......Page 276
8.5 Onset of Detonation......Page 291
8.6 Criterion for Transition from Deflagration to Detonation......Page 300
8.7 Closing Remarks......Page 307
9.1 INTRODUCTION......Page 311
9.2 Blast Initiation (Experimental Observations)......Page 313
9.3 Numerical Simulation of Blast Initiation......Page 328
9.4 The Critical Tube Diameter......Page 341
9.5 Other Means of Direct Initiation......Page 353
9.6 Theory of Blast Initiation......Page 363
9.7 The SWACER Mechanism......Page 374
9.8 Closing Remarks......Page 382
Bibliography......Page 384
Index......Page 387