دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Balaji Raghunathan
سری:
ISBN (شابک) : 9781439877302
ناشر: Auerbach Publications
سال نشر: 2013
تعداد صفحات: 251
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب The Complete Book of Data Anonymization From Planning to Implementation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب کامل ناشناس ماندن داده ها از برنامه ریزی تا پیاده سازی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کتاب کامل ناشناس سازی داده ها: از برنامه ریزی تا اجرا نمای 360 درجه ای از حفاظت از حریم خصوصی داده ها با استفاده از ناشناس سازی داده ها ارائه می دهد. این ناشناس سازی داده ها را هم از منظر یک پزشک و هم از منظر حامی برنامه بررسی می کند. با بحث در مورد تجزیه و تحلیل، برنامهریزی، راهاندازی و حاکمیت، کل فرآیند انطباق و پیادهسازی ابزارها و برنامههای ناشناس را نشان میدهد. بخش اول کتاب با توضیح چیستی ناشناس سازی داده ها آغاز می شود. نحوه اجرای برنامه ناشناس سازی داده ها و همچنین چالش های موجود هنگام برنامه ریزی برای این طرح در سطح سازمانی را شرح می دهد. بخش دوم الگوهای راه حل های مختلف و تکنیک های موجود برای ناشناس سازی داده ها را شرح می دهد. نحوه انتخاب یک الگو و تکنیک را توضیح می دهد و یک رویکرد مرحله ای به سمت ناشناس سازی داده ها برای یک برنامه ارائه می دهد. این کتاب راهنمای پیشرفتهای برای اجرای ناشناسسازی دادهها، بسیار فراتر از تکنیکهای ناشناسسازی دادهها میپردازد تا دیدگاه گستردهای را که برای اطمینان از حفاظت جامع در برابر سوء استفاده از دادهها لازم است، در اختیار شما قرار دهد.
The Complete Book of Data Anonymization: From Planning to Implementation supplies a 360-degree view of data privacy protection using data anonymization. It examines data anonymization from both a practitioner's and a program sponsor's perspective. Discussing analysis, planning, setup, and governance, it illustrates the entire process of adapting and implementing anonymization tools and programs. Part I of the book begins by explaining what data anonymization is. It describes how to scope a data anonymization program as well as the challenges involved when planning for this initiative at an enterprisewide level. Part II describes the different solution patterns and techniques available for data anonymization. It explains how to select a pattern and technique and provides a phased approach towards data anonymization for an application. A cutting-edge guide to data anonymization implementation, this book delves far beyond data anonymization techniques to supply you with the wide-ranging perspective required to ensure comprehensive protection against misuse of data.
Content: Overview of Data Anonymization Points to Ponder PII PHI What is Data Anonymization? What are the Drivers for Data Anonymization? The Need To Protect Sensitive Data Handled As Part Of Business Increasing Instances of Insider Data Leakage, Misuse of Personal Data and the Lure of Money for Mischievous Insiders Employees Getting Even With Employers Negligence of Employees to Sensitivity of Personal Data Astronomical Cost to the Business due to Misuse of Personal Data Risks Arising out of Operational Factors Like Outsourcing and Partner Collaboration Outsourcing Of IT Application Development, Testing And Support Increasing Collaboration With Partners Legal and Compliance Requirements Will Procuring and Implementing a Data Anonymization Tool by Itself Ensure Protection of Privacy of Sensitive Data? Ambiguity of Operational Aspects Allowing the Same Users to Access both Masked and Unmasked Environment Lack Of Buy-In From IT Application Developers, Testers and End-Users Compartmentalized Approach to Data Anonymization Absence of Data Privacy Protection Policies or Weak enforcement of Data Privacy Policies Benefits Of Data Anonymization Implementation DATA ANONYMIZATION PROGRAM SPONSOR\'S GUIDEBOOK Enterprise Data Privacy Governance Model Points to Ponder Chief Privacy Officer Unit /Department Privacy Compliance Officers The Steering Committee for Data Privacy Protection Initiatives Management Representatives Information Security And Risk Department Representatives Representatives from the Department Security and Privacy Compliance Officers Incident Response Team The Role of the Employee in Privacy Protection The Role of the CIO Typical Ways Enterprises Enforce Privacy Policies Enterprise Data Classification Policy and Privacy Laws Points to Ponder Regulatory Compliance Enterprise Data Classification Points to Consider Controls For Each Class Of Enterprise Data Operational Processes, Guidelines and Controls for Enterprise Data Privacy Protection Points to Ponder Privacy Incident Management Planning for Incident Resolution Preparation Incident Capture Incident Response Post Incident Analysis Guidelines and Best Practices PII/PHI Collection Guidelines Guidelines for Storage and Transmission of PII/PHI PII/PHI Usage Guidelines Guidelines for Storing PII/PHI on Portable Devices and Storage Devices Guidelines for Staff The Different Phases of a Data Anonymization Program Points to Ponder How Should I Go about the Enterprise Data Anonymization Program? The Assessment Phase Tool Evaluation and Solution Definition Phase Data Anonymization Implementation Phase Operations Phase or the Steady-State phase Food For Thought When Should the Organization Invest on a Data Anonymization Exercise? The Organization\'s Security Policies Anyway Mandate Authorization to be Built-in For Every Application. Won\'t This be Sufficient? Why is Data Anonymization Needed? Is there a Business Case for Data Anonymization Program in My Organization? When Can a Data Anonymization Program be Called as a Successful One? Why Should I go for a Data Anonymization Tool when SQL Encryption Scripts Can be Used to Anonymize Data? What are the Benefits Provided by Data Masking Tools for Data Anonymization? Why is a Tool Evaluation Phase Needed? Who Should Implement Data Anonymization? Should it be the Tool Vendor or the IT Service Partner or External Consultants or Internal Employees? How Many Rounds of Testing Must be Planned to Certify that Application Behavior is Unchanged with use of Anonymized Data? Departments Involved in Enterprise Data Anonymization Program Points to Ponder The Role of the Information Security and Risk Department The Role of the Legal Department The Role of Application Owners and Business Analysts The Role of Administrators The Role of the Project Management Office (PMO) The Role of the Finance department Steering Committee Privacy Meter- Assessing The Maturity Of Data Privacy Protection Practices In The Organization Points to Ponder Planning A Data Anonymization Implementation Data Privacy Maturity Model Enterprise Data Anonymization Execution Model Points to Ponder Decentralized Model Centralized Anonymization Setup Shared Services Model Tools and Technology Points to Ponder Shortlisting Tools for Evaluation Tool Evaluation and Selection Functional Capabilities Technical Capabilities Operational Capabilities Financial Parameters Scoring criteria for Evaluation Anonymization Implementation - Activities & Effort Points to Ponder Anonymization Implementation Activities For An Application Application Anonymization Analysis and Design Anonymization Environment Setup Application Anonymization Configuration and Build Anonymized Application Testing Complexity Criteria Application Characteristics Environment Dependencies Arriving at an Effort Estimation Model Definition of Complexity Criteria Ready-Reckoner Preparation Determination Of The Complexity Of The Application To Be Anonymized Assignment of Effort to Each Activity Based on the Ready-Reckoner Case Study Context Estimation Approach Application Complexity Arriving at a Ball Park Estimate The Next Wave of Data Privacy Challenges DATA ANONYMIZATION PRACTITIONERS GUIDE Data Anonymization Patterns Points to Ponder Pattern Overview Data State Anonymization Patterns Points to Ponder Principles of Anonymization Static Masking Patterns EAL Pattern (Extract Anonymize Load Pattern) ELA Pattern (Extract Load Anonymize Pattern) Data Subsetting Dynamic Masking Dynamic Masking Patterns Interception Pattern Invocation Patterns Application of Dynamic Masking patterns Dynamic Masking vs. Static Masking Anonymization Environment Patterns Points to Ponder Typical Application Environments in an enterprise Testing Environments Standalone Environment Integration Environment Automated Integration Test environment Scaled-Down Integration Test Environment Data Flow Patterns Across Environments Points to Ponder Flow of Data from Production Environment Databases to Non-Production Environment Databases Movement of Anonymized Files from Production Environment to Non-Production Environments Masked Environment for Integration Testing-Case Study Data Anonymization Techniques Points to Ponder Basic Anonymization Techniques Substitution Shuffling Number Variance Date Variance Nulling Out Character Masking Cryptographic Techniques Partial Sensitivity and Partial Masking Masking Based on External Dependency Auxiliary Anonymization Techniques Alternate Classification of Data Anonymization Techniques Substitution Techniques Translation Techniques Leveraging Data Anonymization Techniques Data Anonymization Implementation Points to Ponder Pre-Requisites Before Starting The Anonymization Implementation Activities Sensitivity Definition Readiness - What is Considered as Sensitive Data by the Organization? Sensitive Data Discovery- Where does Sensitive Data Exist? Application Architecture Analysis Application Sensitivity Analysis What is Sensitivity Level and How Do We Prioritize Sensitive Fields for Treatment? Anonymization Design Phase Anonymization Implementation, Testing, and Rollout Phase Anonymization Operations Incorporation of Privacy protection procedures as part of Software Development Life Cycle and Application Lifecycle for New Applications Impact on SDLC Team Challenges Faced as part of Any Data Anonymization Implementation Best Practices To Ensure Success Of Anonymization Projects Glossary