دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: پایگاه داده ها ویرایش: 1 نویسندگان: Martin Treder سری: ISBN (شابک) : 9781484261149, 1484261143 ناشر: Apress سال نشر: 2020 تعداد صفحات: 436 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 مگابایت
کلمات کلیدی مربوط به کتاب دفترچه راهنمای مدیر ارشد داده: زنجیره تأمین داده سازمان را تنظیم و اجرا کنید: تجزیه و تحلیل داده ها، مدیریت، روانشناسی، داده های بزرگ، بهترین شیوه ها، ذینفعان، زنجیره تامین داده، حاکمیت داده، کیفیت داده، اخلاق داده ها
در صورت تبدیل فایل کتاب The Chief Data Officer Management Handbook: Set Up and Run an Organization’s Data Supply Chain به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دفترچه راهنمای مدیر ارشد داده: زنجیره تأمین داده سازمان را تنظیم و اجرا کنید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نمی توان انکار کرد که قرن بیست و یکم مبتنی بر داده است و بسیاری از صنایع دیجیتال بر جمع آوری و تجزیه و تحلیل دقیق حجم انبوه اطلاعات متکی هستند. یک افسر ارشد داده (CDO) در یک شرکت رهبر این فرآیند است و این موقعیت را اغلب دلهره آور می کند. دفترچه راهنمای مدیریت افسر ارشد داده اینجا برای کمک است. با این کتاب، نویسنده مارتین تردر به CDO ها توصیه می کند که چگونه برای مسئولیت های خود بهتر آماده شوند، چگونه رویکردی پایدارتر ایجاد کنند و چگونه از دام های معمولی اجتناب کنند. بر اساس تجربیات مثبت و منفی به اشتراک گذاشته شده توسط CDO های فعلی، دفترچه راهنمای مدیریت مدیر ارشد داده شما را در طراحی ساختار ایده آل یک دفتر داده، پیاده سازی آن و جذب افراد مناسب راهنمایی می کند. موضوعات مهمی مانند زنجیره تامین داده، استراتژی داده و حاکمیت داده توسط Treder به دقت پوشش داده شده است. به عنوان یک CDO مهم است که از موقعیت خود به طور موثر با کل تیم خود استفاده کنید. دفترچه راهنمای مدیریت افسر ارشد داده به همه کارمندان اجازه می دهد تا مالکیت همکاری داده ها را به دست بگیرند. داده ها پایه و اساس نوآوری های فناوری فعلی و آینده هستند و شما می توانید رهبر باشید که تأثیر بزرگ بعدی را ایجاد می کند. آنچه شما یاد خواهید گرفت • از عناصر مهم مدیریت موثر داده ها استفاده کنید • یک دید کلی جامع از تمام حوزه های داده (که اغلب به طور مستقل مدیریت می شوند) به دست آورید • کار با زنجیره تامین داده، از اکتساب داده تا استفاده از آن، بررسی همه ذینفعان مرتبط، استراتژی داده، و حاکمیت داده این کتاب برای چه کسی است CDO ها، مدیران داده، مشاوران داده، و همه متخصصانی که به دنبال درک نحوه عملکرد یک دفتر داده در یک سازمان هستند. درباره نویسنده مارتین تریدر یک مدیر اجرایی و مشاور باتجربه داده با 25 سال تجربه در شرکت های بین المللی است. در طول دهه گذشته، مارتین سازمانهای بینالمللی مدیریت داده DHL Express، TNT Express و FedEx Express را تأسیس و رهبری کرد که حوزههای حاکمیت داده، مدیریت دادههای اصلی، مدلسازی داده، کیفیت داده، علم داده و تجزیه و تحلیل دادهها را پوشش میدهد. مارتین در حالی که یک ریاضیدان مورد مطالعه (موضوعات اصلی تحقیق در عملیات و آمار کاربردی) است، همیشه بر ایجاد ارزش تجاری بلندمدت از طریق داده های کاملاً کنترل شده و شکل دادن به یک فرهنگ آگاهانه از داده ها تمرکز کرده است. امروز او به شرکت ها کمک می کند تا به سازمان های داده محور تبدیل شوند.
There is no denying that the 21st century is data driven, with many digital industries relying on careful collection and analysis of mass volumes of information. A Chief Data Officer (CDO) at a company is the leader of this process, making the position an often daunting one. The Chief Data Officer Management Handbook is here to help. With this book, author Martin Treder advises CDOs on how to be better prepared for their swath of responsibilities, how to develop a more sustainable approach, and how to avoid the typical pitfalls. Based on positive and negative experiences shared by current CDOs, The Chief Data Officer Management Handbook guides you in designing the ideal structure of a data office, implementing it, and getting the right people on board. Important topics such as the data supply chain, data strategy, and data governance are thoughtfully covered by Treder. As a CDO it is important to use your position effectively with your entire team. The Chief Data Officer Management Handbook allows all employees to take ownership in data collaboration. Data is the foundation of present and future tech innovations, and you could be the leader that makes the next big impact. What You Will Learn • Apply important elements of effective data management • Gain a comprehensive overview of all areas of data (which are often managed independently • Work with the data supply chain, from data acquisition to its usage, a review of all relevant stakeholders, data strategy, and data governance Who This Book is For CDOs, data executives, data advisors, and all professionals looking to understand about how a data office functions in an organization. About the Author Martin Treder is a seasoned, hands-on data executive and advisor with 25 years of experience in international corporations. During the past decade, Martin established and led the international data management organisations of DHL Express, TNT Express, and FedEx Express, covering the areas of data governance, masterdata management, data modelling, data quality, data science, and data analytics. While being a studied mathematician (main topics operations research and applied statistics), Martin has always focused on creating long-term commercial value through well-governed data, and on shaping a data-conscious culture. Today he helps companies transform into data-driven organizations.
Contents About the Author Acknowledgments Foreword Preface Introduction Part I: Designing an Effective Data Office Chapter 1: Understand Your Organization Five implicit Data Governance models Centralistic Data Governance Democratic Data Governance Liberal Data Governance Technocratic Data Governance Anarchistic Data Governance Behavioral patterns in data matters “Data is an IT task” “We can focus on Analytics” “It’s digitalization” Paralysis by analysis “Digital Natives know how to do it” “Our business functions can do data on their own” “It is all good” “Tidy up and tick the box” Chapter 2: Aspects of Effective Data Management Maturity assessment The two main gaps Subsidiarity Business orientation Commercial orientation Collaboration The Data Office Clear data ownership A decision and escalation process Information sharing A Data Stewardship Network Checklist Motivation Cross-functionality Focus on organization-wide targets, not on departmental targets Incentivize collaboration Make the focus part of your organization culture Change Management Data Literacy Help employees understand data Share knowledge Share data Chapter 3: The Data Supply Chain A. Manage data sources B. Validate data on entry C. Classify data D. Manage data quality E. Do data housekeeping F. Curate data The purpose of data curation Aspects of good data curation Provision of information to users G. Use data Summary: Cover the entire data supply chain Chapter 4: Data Vision, Mission, and Strategy Data strategy – seriously? Strategy vs. execution Strategy in times of Agile Culture eats strategy for breakfast? Vision What should a vision accomplish? What should a vision focus on? Mission Define centrally governed data handling standards Introduce cross-functional MDM, based on a single source of truth Ensure good Data Quality through measurement and improvement initiatives Work with business people to turn data into information Have all of this supported by the right toolset Implement adequate ethical standards in dealing with data Train and connect all entities in data matters Strategy Why do you need a data strategy? How is the strategy positioned in comparison to the strategy of the organization? How do you develop and maintain your data strategy? Your individual measure of success Chapter 5: Masterdata Management Isn’t static data old-fashioned? What does Masterdata cover? Masterdata, Reference Data, Metadata Examples of Masterdata Examples of Reference Data Examples of Metadata Managing Masterdata Cross-functional MDM The Data Model History view of Masterdata MDM and Masterdata software Masterdata design styles Understand your requirements first Determining your requirements Waterfall or Agile? Build or buy? Chapter 6: Data Governance Shape a set of Data Principles Develop data policies What are data policies good for? How individual do data policies need to be? How do you determine responsibilities for policies? How do you determine the setup of your policies? How do you develop a set of data policies? What does a data policy look like? The target state of managed data Scope of Data Governance Can data be too confidential to be governed? Shouldn’t we exempt research data? Do we need different Governance for different types of data? How about data we don’t know yet? Decision-making and collaboration Management Board Executive data decision body Data collaboration group Data Community Data review and decision process Speed of implementation Chapter 7: The Data Language Characteristics of language Don’t we all speak English? The dynamics of language The data glossary What is a glossary? The risk of not having a glossary What needs to go into a glossary? How do you introduce a glossary? Data Rules and Standards The purpose of rules and standards Data Standards Data Rules Working on Data Rules and Standards Documenting Data Rules and Standards The Data Model The value of a Data Model The value of ONE Data Model Example customer data Analytics and Data Modeling Conclusions Choosing a software solution Do you need a tool to manage data language? Are there any primary requirements? Chapter 8: Data Processes Why prescribing processes? Process development aspects Ownership Existing data processes Collaboration General considerations Technical debt handling Conflict management Ease of use Process triggers Request for project approval or funding Issue report Change request Expiry of technical debt Request for clarification Escalation The data review gate Concrete process groups Data request process Project data review process When is a project relevant for data review? Cases where Data Management is not the primary point of contact A typical project data review Support processes Data content change process Data Quality Management process Data logic change process Data glossary process Data access request process Manage data in business processes Chapter 9: Roles and Responsibilities Introduction to roles and responsibilities Data Owners and Data Champions Data Owners Data Champions Data Creators and Consumers Other business roles Business ownership roles Lack of ownership Centralized roles Data Governance Data Quality Data solutions and projects Masterdata management Data Architecture Data privacy and compliance Data Science Data Analytics and BI Chapter 10: Data Quality Why is Data Quality important? Dangerous Data Quality standpoints Assuming your DQ is good Assuming your DQ is good enough Assuming you cannot measure DQ Assuming bad DQ is a “Data Office” task Assuming everybody wants good DQ Addressing DQ only once you are in trouble Working on DQ for Analytics purposes only Working on DQ where first problems arise Accepting bad DQ because better DQ is impossible or difficult Not communicating the level of DQ How to deal with Data Quality? DQ must be a top management topic DQ requires the right motivation Let the right parties raise their hands Focus on relevant data Keep and get data clean Everybody should be responsible DQ needs to get measured DQ needs to lead to action Management of business metrics Measure the performance of teams Measure the consistency of data Consider heuristics Determine unwanted behavior Break down your quality measurement Quality management to cover data Chapter 11: Shaping Data Office Teams The effective creation of data teams Data Architecture and glossary The “data language” team Glossary Management How to organize Data Architecture? How to make Data Architecture attractive? Analytics Analytics across silos Data Science Data report management Document Management A centralized approach can add value Documents in Data Management? How to shape a Document Management team? Data Quality The central Data Quality team Data Quality across the organization Organizing Masterdata Management Masterdata maintenance Masterdata design Masterdata coordination Data Project Office Yet another overhead function? Responsibilities of a Data Project Office Focus areas The Data Project Office within the organization Setting up a Data Project Office Data service function Business helpdesk Data organization contact Attracting and retaining experts Diversity is beneficial – as an outcome Everybody wants to join Google The sweeter challenge next door No meetings, please Where’s the infrastructure? Playground vs. strategy Detached from business Little, stupid jobs Even Data Science can be boring Recognition? Data Scientist vs. DB Admin Curing the world’s hunger Six Sigma Six Sigma and data Setup of Six Sigma within the Data Office A typical DMAIC data process Define Measure Analyze Improve Control Part II: The Psychology of Data Management Chapter 12: Typical Challenges of a CDO Why is it so hard to be a CDO? Struggle for supremacy Lack of awareness WHY should we manage data? Why should we manage data NOW? Business silos Variant 1: “We know best what’s good for us.” Variant 2: “I am faster if I do not need to align with others.” Lack of ownership Opt-out attitude Disengagement Skepticism Business arrogance Summary: Prerequisites for success Board sponsorship (active!) An adequate reporting line Clear expectations Clear roles in data matters Chapter 13: How (Not) to Behave As a CDO Don’t rely on formal authority Start small, and pick your battles Be humble Present yourself as a facilitator Avoid suboptimal language Go out and talk to people Chapter 14: Stakeholders Manage stakeholders at all levels Document your insights Classify your stakeholders Determine your executive allies Know the motives of your allies Concrete recommendations Tailor your stories to your stakeholders Ask the right questions Pick the right weaknesses Keep data on the agenda Shape your data network Functional Data Champions Business Data Owners Data Creators: Data Stewardship Network Data Consumers: Analytics Network Double loyalty Orchestrate your data network Plan to consider different audiences Frequently stated concerns Which problem are you trying to solve? What’s in it for me? I have no bandwidth for data stuff We can look at your strategic ideas tomorrow IT has always covered this Correct data handling jeopardizes my project What if you fail? It has worked well without a Data Office I don’t want to change… Will an algorithm replace me Chapter 15: Psychology of Governance Don’t claim covered ground Design an acceptable starting setup Base your authority on accepted authorities Balancing two extremes Between absolutism and democracy Between centralized and local solutions Between standardized and individualized Between dirty and perfect Shape your data brand Elevator pitch Part III: Practical Aspects of Data Management Chapter 16: Data Business Cases Business cases for data – why? Business cases in a perfect world The fundamental idea behind a business case Capital cost over time Consideration of “risk” Project selection All good? General challenges Business case culture Quantification of benefits Conflicting targets within the organization Difficult validation in retrospect Quickly outdating business cases Data-specific challenges Data is not sexy Determining the benefits of enablers Late break-even Motives of business leaders Eight secrets of data business cases I. Do active stakeholder management II. Foster data literacy and transparency III. Create and maintain a data road map IV. Treat data as an asset V. Work in stealth mode if necessary VI. Explain the cost of NOT doing it VII. Set up and follow business case rules VIII. Develop a corporate data culture Use cases for data as an asset What drives your forecasts? Data – why NOW Consumer data Chapter 17: Data Ethics and Compliance Ethical behavior and data? What could go wrong? Where do we stand today? Resulting questions for each business What are your options? A broader perspective GDPR – All done? You are not done after closing “the project” Privacy must become a way of thinking See business opportunities Recommendations Chapter 18: The Outside World Why look beyond my organization? Sharing data across organizations Different ways of sharing data The motivation for sharing data External data Internal data is not enough What you can learn from external data The CDM and external data Challenges around external data structures Consequences for your data model The mapping of internal and external data Data Quality as a service? Global standards Your own standards – good but not good enough Standards across organizations Beware of pseudo-standards! Practical approach Cloud strategy for data Outsourcing to the Cloud Software as a Service Intelligence as a Service Risk of Data Model issues Risk of black box issues Options for proper IaaS usage Blockchain Unique identification and blockchain A false sense of security Chapter 19: Handling Data The Virtual Single Source of Truth What does a VSSoT look like? How do you shape a VSSoT? Single source of logic Service-Oriented Architecture (SOA) Distributed logic – the Octopus Principle Configuration vs. standardization “Effective Date” concept Making data international The Babylon effect Alias terms Transliteration Country-specific languages Data Debt Management Agile and data A solid foundation – why? A solid foundation – how? Starting with the happy flow? What makes an initiative successful? The three dimensions of success A scoping approach Chapter 20: Analyzing Data Preconditions of meaningful Analytics Are all preconditions fulfilled? Can the investigator influence the outcome? How about combining both challenges General limits of AI Data sources AI algorithms Human behavior AI – Quo Vadis? Recommendations around Analytics I. Determine the necessary degree of preciseness II. Don’t use a formula just because “it works” III. Check all preconditions IV. Be open about the limitations V. Explain your assumptions VI. Don’t convey a false impression of preciseness VII. Automate data preparation carefully VIII. Use DataOps IX. Balance diligently X. Exclude emotional factors XI. Consider changes outside the model XII. Define success comprehensively Explainable AI (XAI) Unknown cause and effect Trust issues Ethical issues Is there a way out? Chapter 21: Data Management in Crises Prepare for the crisis Think the unimaginable Be ready to prioritize activities Be part of the organization’s crisis plan Master the crisis Align with company priorities Don’t try to become a hero Prepare your team Listen to your team Structure your action Manage the state of emergency Learn from the crisis When does a crisis end? The crisis as a catalyst Lessons learned Celebrate Chapter 22: Data in Mergers and Acquisitions What is going wrong today? Integration planning The data approach Who should manage data integration? Understand the motives Focus on interoperability Create a high-level plan Determine the “best-of-breed” solutions Don’t innovate (too much) in parallel Data mapping Organization Concrete mapping cases Chapter 23: Data for Innovation How can data drive innovation? Demystifying innovation What is “data-driven innovation”? Using data to innovate Supporting data-driven innovation Determining roadblocks Organize Innovation Proper handling of business cases Adding data to your culture of innovation Commercializing data ideas The “hundred thousand customers” strategy Data innovation factory Appendix A: List of Theorems Bibliography Index