ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب The Center and Focus Problem: Algebraic Solutions and Hypotheses (Chapman & Hall/CRC Monographs and Research Notes in Mathematics)

دانلود کتاب مسئله مرکز و تمرکز: راه‌حل‌ها و فرضیه‌های جبری (تنگ‌نگاری‌ها و یادداشت‌های پژوهشی چپمن و هال/CRC در ریاضیات)

The Center and Focus Problem: Algebraic Solutions and Hypotheses (Chapman & Hall/CRC Monographs and Research Notes in Mathematics)

مشخصات کتاب

The Center and Focus Problem: Algebraic Solutions and Hypotheses (Chapman & Hall/CRC Monographs and Research Notes in Mathematics)

ویرایش: 1 
نویسندگان: ,   
سری:  
ISBN (شابک) : 1032017252, 9781032017259 
ناشر: Chapman and Hall/CRC 
سال نشر: 2021 
تعداد صفحات: 227 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 9 مگابایت 

قیمت کتاب (تومان) : 39,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب The Center and Focus Problem: Algebraic Solutions and Hypotheses (Chapman & Hall/CRC Monographs and Research Notes in Mathematics) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مسئله مرکز و تمرکز: راه‌حل‌ها و فرضیه‌های جبری (تنگ‌نگاری‌ها و یادداشت‌های پژوهشی چپمن و هال/CRC در ریاضیات) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مسئله مرکز و تمرکز: راه‌حل‌ها و فرضیه‌های جبری (تنگ‌نگاری‌ها و یادداشت‌های پژوهشی چپمن و هال/CRC در ریاضیات)


توضیحاتی درمورد کتاب به خارجی

The Center and Focus Problem: Algebraic Solutions and Hypotheses, M. N. Popa and V.V. Pricop, ISBN: 978-1-032-01725-9 (Hardback)

This book focuses on an old problem of the qualitative theory of differential equations, called the Center and Focus Problem. It is intended for mathematicians, researchers, professors and Ph.D. students working in the field of differential equations, as well as other specialists who are interested in the theory of Lie algebras, commutative graded algebras, the theory of generating functions and Hilbert series. The book reflects the results obtained by the authors in the last decades.

A rather essential result is obtained in solving Poincaré's problem. Namely, there are given the upper estimations of the number of Poincaré-Lyapunov quantities, which are algebraically independent and participate in solving the Center and Focus Problem that have not been known so far. These estimations are equal to Krull dimensions of Sibirsky graded algebras of comitants and invariants of systems of differential equations.

Table of Contents

1. Lie Algebra Of Operators Of Centro-Affine Group Representation In The Coefficient Space Of Polynomial Differential Systems 2. Differential Equations For Centro-Affine Invariants And Comitants Of Differential Systems And Their Applications 3. Generating Functions And Hilbert Series For Sibirsky Graded Algebras Of Comitants And Invariants Of Differential Systems 4. Hilbert Series For Sibirsky Algebras And Krull Dimension For Them 5. About The Center And Focus Problem 6. On The Upper Bound Of The Number Of Algebraically Independent Focus Quantities That Take Part In Solving The Center And Focus Problem For The System s(1,m1,…,m`) 7. On The Upper Bound Of The Number Of Algebraically Independent Focus Quantities That Take Part In Solving The Center And Focus Problem For Lyapunov System. Bibliography Appendixes

Biographies

Popa Mihail Nicolae, holds a Ph.D. from Gorky University (now Nizhny Novgorod, Russia). He has served as Director and Deputy Director of Vladimir Andrunachievici Institute of Mathematics and Computer Science (IMCS)) in the Laboratory of Differential Equations. He is Professor at the State University of Tiraspol (based in Chisinau). His scientific interests are related to the invariant processes in the qualitative theory of differential equations, Lie algebras and commutative graded algebras, generating functions and Hilbert series, orbit theory, Lyapunov stability theory.

Pricop Victor Vasile, holds a Ph.D. from Vladimir Andrunachievici Institute of Mathematics and Computer Science. He is professor at the State Institute of International Relations of Moldova. Victor Pricop's scientific interests are related to Lie algebras and graded algebras of invariants and comitants, generating functions and Hilbert series, applications of algebras to polynomial differential systems.



فهرست مطالب

Cover
Half Title
Series Page
Title Page
Copyright Page
Table of Contents
Authors
Introduction
1 Lie Algebra of Operators of Centro-Affine Group Representation in the Coefficient Space of Polynomial Differential Systems
	1.1 Two-dimensional Polynomial Differential Systems
		1.1.1 Affine System
		1.1.2 System with Quadratic Nonlinearities
		1.1.3 Quadratic System
		1.1.4 System with Cubic Nonlinearities
		1.1.5 Cubic System
	1.2 One-Parameter Linear Groups of Transformations of the Phase Plane of System (1.1)-(1.2)
	1.3 Centro-Affine and Unimodular Transformation Groups of the Phase Plane of System (1.1)-(1.2)
	1.4 Lie Operators of One-Parameter Linear Groups and Their Representations in the Coefficient Space of System (1.1)-(1.2)
	1.5 Operators of Representation of the Linear Groups (1.12), (1.14), (1.16) and (1.17) in the Space of Variables and Coefficients of System (1.1)-(1.2)
	1.6 Lie Algebra of Operators of Centro-Affine Group Represen-tation in the Space of Variables and Coefficients of System (1.1)-(1.2)
	1.7 Comments to Chapter One
2 Differential Equations for Centro-Affine Invariants and Comitants of Differential Systems and Their Applications
	2.1 Concept of Centro-Affine Comitant and an Invariant of Differential System
	2.2 Centro-Affine Transformations of System (1.1) (1.2)
	2.3 Differential Equations for Centro-Affine Invariants and Comitants
	2.4 Rational Absolute Centro-Affine Invariants and Comitants and Their Applications
	2.5 Examples of Algebraic Bases of Centro-Affine Comitants and Invariants for Some Differential Systems
	2.6 Comments to Chapter Two
3 Generating Functions and Hilbert Series for Sibirsky Graded Algebras of Comitants and Invariants of Differential Systems
	3.1 Formulas for Weights of Centro Affine Comitants and Invariants of Given Type
	3.2 Initial form of Generating Function for Centro-Affine Comitants of Differential Systems
	3.3 Examples of Reduced Forms of Generating Functions for Centro-Affine Comitants of Differential Systems
	3.4 Hilbert Series for Graded Algebras of Unimodular Comitants and Invariants of Differential Systems
	3.5 Comments to Chapter Three
4 Hilbert Series for Sibirsky Algebras S[sub(Г)] (SI[sub(Г)] ) and Krull Dimension for Them
	4.1 Krull Dimension for Sibirsky Graded Algebras
	4.2 Hilbert Series for Sibirsky Graded Algebras S[sub(1)],m[sub(1)],m[sub(2)]....m[sub(l)],SI[sub(1)],m[sub(1)],m[sub(2)]....m[sub(l)]
	4.3 Hilbert Series for Sibirsky Algebras S[sub(1,2)] , SI[sub(1,2)] and Their Krull Dimensions
	4.4 Hilbert Series for Sibirsky Algebras S[sub(1,3)] , SI[sub(1,3)] and Their Krull Dimensions
	4.5 Hilbert Series for Sibirsky Algebras S[sub(1,4)] , SI[sub(1,4)] and Their Krull Dimensions
	4.6 Hilbert Series for Sibirsky Algebras S[sub(1,5)] , SI[sub(1,5)] and TheirKrull Dimensions
	4.7 Obtaining Ordinary Hilbert Series for Sibirsky Algebras S[sub(1,2,3)]SI[sub(1,2,3)] Using, Residues, and Calculating Krull Dimensions for Them
	4.8 Comments to Chapter Four
5 About the Center and Focus Problem
	5.1 On a New Formulation of the Center and Focus Problem for Differential Systems s(1,m[sub(1)]m[sub(2)],m[sub(l)] )
	5.2 Sibirsky Invariant Variety for Center and Focus
	5.3 Focus Quantities L[sub(k)] and Constants G[sub(k)] on Sibirsky Invariant Variety of the System s(1,m[sub(1)]),...,m[sub(l)] and Null Focus Pseudo-Quantity
	5.4 Polynomials in Coefficients of Differential Systems that Have Weight Isobarity (h,g)
	5.5 Comments to Chapter Five
6 On the Upper Bound of the Number of Algebraically Independent Focus Quantities that Take Part in Solving the Center and Focus Problem for the System s(1,m[sub(1)]),...,m[sub(2)]
	6.1 Applications of Generating Functions and Hilbert Series to the Center and Focus Problem for the Differential System s(1,2)
	6.2 Type of Generalized Focus Pseudo-Quantities for the Differential System s(1; 3)
	6.3 On the Upper Bound of the Number of Algebraically Independent Focus Pseudo-Quantities, that Take Part in Solving the Center and Focus Problem for the Differential System s(1; 3)
	6.4 The Differential System s(1, 4) and Algebraically Independent Generalized Focus Pseudo-Quantities
	6.5 On the Upper Bound of the Number of Algebraically Independent Focus Pseudo-Quantities for the Differential System s(1,5)
	6.6 Comitants that Have Generalized Focus Pseudo-Quantities of the Systems(1, 2, 3) as Coefficients, and Their Sibirsky Graded Algebra
	6.7 On the Upper Bound of the Number of Algebraically Independent Focus Quantities that Take Part in Solving the Center and Focus Problem for the Differential System s(1,m[sub(1)],m[sub(l)])
	1 ` 6.8 Comments to Chapter Six
7 On the Upper Bound of the Number of Functionally Independent Focus Quantities that Take Part in Solving the Center and Focus Problem for Lyapunov System
	7.1 Lie Operators of Representation of the Rotation Group SO(2,R) in the Space of Coefficients of Lyapunov System (5.6)
	7.2 Comitants of System (7:1)  (7:2) for the Rotation Group and Concept of Functional Basis
	7.3 General Formulas that Interconnect Coefficients of Comitants of the Lyapunov System s(1,m[sub(1)] ,....,m[sub(l)] ) Among Themselves with Respect to the Rotation Group
	7.4 On the Invariance of Focus Quantities in the Center and Focus Problem with Respect to the Rotation Group
	7.5 On the Upper Bound of the Number of Algebraically Indepen-dent Focus Quantities that Take Part in Solving the Center and Focus Problem for the Lyapunov System sL(1,m[sub(1)] ,....,m[sub(l)] )
	7.6 Comments to Chapter Seven
Appendix 1
Appendix 2
Appendix 3
Appendix 4
Appendix 5
Appendix 6
Appendix 7
Appendix 8
Appendix 9
Appendix 10
Bibliography
Index




نظرات کاربران