ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب The Britannica Guide to Analysis and Calculus (Math Explained)

دانلود کتاب راهنمای Britannica برای تجزیه و تحلیل و حساب (ریاضی توضیح داده شده)

The Britannica Guide to Analysis and Calculus (Math Explained)

مشخصات کتاب

The Britannica Guide to Analysis and Calculus (Math Explained)

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 1615301232, 9781615301232 
ناشر: Rosen Educational Publishing 
سال نشر: 2010 
تعداد صفحات: 296 
زبان: English  
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 5 مگابایت 

قیمت کتاب (تومان) : 29,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 25


در صورت تبدیل فایل کتاب The Britannica Guide to Analysis and Calculus (Math Explained) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب راهنمای Britannica برای تجزیه و تحلیل و حساب (ریاضی توضیح داده شده) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

TITLE......Page 4
COPYRIGHT......Page 5
CONTENTS......Page 6
INTRODUCTION......Page 13
CHAPTER 1 MEASURING CONTINUOUS CHANGE......Page 22
BRIDGING THE GAP BETWEEN ARITHMETIC AND GEOMETRY......Page 23
DISCOVERY OF THE CALCULUS AND THE SEARCH FOR FOUNDATIONS......Page 25
NUMBER SYSTEMS......Page 26
FUNCTIONS......Page 27
APPROXIMATIONS IN GEOMETRY......Page 28
INFINITE SERIES......Page 30
THE LIMIT OF A SEQUENCE......Page 31
CONTINUITY OF FUNCTIONS......Page 32
PROPERTIES OF THE REAL NUMBERS......Page 33
DIFFERENTIATION......Page 36
INSTANTANEOUS RATES OF CHANGE......Page 37
FORMAL DEFINITION OF THE DERIVATIVE......Page 39
GRAPHICAL INTERPRETATION......Page 41
HIGHER-ORDER DERIVATIVES......Page 43
THE FUNDAMENTAL THEOREM OF CALCULUS......Page 45
ANTIDIFFERENTIATION......Page 46
THE RIEMANN INTEGRAL......Page 47
NEWTON AND DIFFERENTIAL EQUATIONS......Page 49
DYNAMICAL SYSTEMS THEORY AND CHAOS......Page 52
MUSICAL ORIGINS......Page 56
PARTIAL DERIVATIVES......Page 58
D’ALEMBERT’S WAVE EQUATION......Page 59
TRIGONOMETRIC SERIES SOLUTIONS......Page 60
FOURIER ANALYSIS......Page 63
COMPLEX ANALYSIS......Page 65
FORMAL DEFINITION OF COMPLEX NUMBERS......Page 66
EXTENSION OF ANALYTIC CONCEPTS TO COMPLEX NUMBERS......Page 67
SOME KEY IDEAS OF COMPLEX ANALYSIS......Page 69
MEASURE THEORY......Page 71
FUNCTIONAL ANALYSIS......Page 74
VARIATIONAL PRINCIPLES AND GLOBAL ANALYSIS......Page 77
CONSTRUCTIVE ANALYSIS......Page 79
NONSTANDARD ANALYSIS......Page 80
THE PYTHAGOREANS AND IRRATIONAL NUMBERS......Page 82
ZENO’S PARADOXES AND THE CONCEPT OF MOTION......Page 84
THE METHOD OF EXHAUSTION......Page 85
MODELS OF MOTION IN MEDIEVAL EUROPE......Page 86
ANALYTIC GEOMETRY......Page 89
DIFFERENTIALS AND INTEGRALS......Page 90
DISCOVERY OF THE THEOREM......Page 92
CALCULUS FLOURISHES......Page 95
EULER AND INFINITE SERIES......Page 97
COMPLEX EXPONENTIALS......Page 98
FUNCTIONS......Page 99
FLUID FLOW......Page 100
ARITHMETIZATION OF ANALYSIS......Page 102
ANALYSIS IN HIGHER DIMENSIONS......Page 104
ARCHIMEDES......Page 107
EUCLID......Page 113
EUDOXUS OF CNIDUS......Page 116
IBN AL-HAYTHAM......Page 119
NICHOLAS ORESME......Page 120
PYTHAGORAS......Page 123
ZENO OF ELEA......Page 124
JEAN LE ROND D’ALEMBERT......Page 126
ISAAC BARROW......Page 130
DANIEL BERNOULLI......Page 132
JAKOB BERNOULLI......Page 134
JOHANN BERNOULLI......Page 135
BONAVENTURA CAVALIERI......Page 137
LEONHARD EULER......Page 138
PIERRE DE FERMAT......Page 141
JAMES GREGORY......Page 145
JOSEPH-LOUIS LAGRANGE, COMTE DE L’EMPIRE......Page 148
PIERRE-SIMON, MARQUIS DE LAPLACE......Page 151
GOTTFRIED WILHELM LEIBNIZ......Page 154
COLIN MACLAURIN......Page 159
SIR ISAAC NEWTON......Page 160
GILLES PERSONNE DE ROBERVAL......Page 168
BROOK TAYLOR......Page 169
EVANGELISTA TORRICELLI......Page 170
JOHN WALLIS......Page 171
STEFAN BANACH......Page 174
BERNHARD BOLZANO......Page 176
LUITZEN EGBERTUS JAN BROUWER......Page 177
AUGUSTIN-LOUIS, BARON CAUCHY......Page 178
RICHARD DEDEKIND......Page 180
JOSEPH, BARON FOURIER......Page 183
CARL FRIEDRICH GAUSS......Page 186
DAVID HILBERT......Page 190
ANDREY KOLMOGOROV......Page 192
HENRI-LÉON LEBESGUE......Page 196
HENRI POINCARÉ......Page 197
BERNHARD RIEMANN......Page 201
STEPHEN SMALE......Page 204
KARL WEIERSTRASS......Page 206
ALGEBRAIC VERSUS TRANSCENDENTAL OBJECTS......Page 208
BESSEL FUNCTION......Page 210
BOUNDARY VALUE......Page 212
CALCULUS OF VARIATIONS......Page 213
CHAOS THEORY......Page 215
CONTINUITY......Page 217
CONVERGENCE......Page 218
CURVATURE......Page 219
DERIVATIVE......Page 221
DIFFERENCE EQUATION......Page 223
DIFFERENTIAL EQUATION......Page 224
DIFFERENTIATION......Page 227
DIRECTION FIELD......Page 228
DIRICHLET PROBLEM......Page 229
ELLIPTIC EQUATION......Page 230
EXACT EQUATION......Page 231
EXPONENTIAL FUNCTION......Page 232
EXTREMUM......Page 234
FOURIER TRANSFORM......Page 235
FUNCTION......Page 236
HARMONIC ANALYSIS......Page 239
HARMONIC FUNCTION......Page 241
INFINITE SERIES......Page 242
INFINITESIMALS......Page 244
INFINITY......Page 246
INTEGRAL......Page 250
INTEGRAL TRANSFORM......Page 251
INTEGRATION......Page 252
INTEGRATOR......Page 253
ISOPERIMETRIC PROBLEM......Page 254
LAGRANGIAN FUNCTION......Page 256
LAPLACE’S EQUATION......Page 257
LAPLACE TRANSFORM......Page 258
LEBESGUE INTEGRAL......Page 259
LIMIT......Page 260
LINE INTEGRAL......Page 261
MEASURE......Page 262
NEWTON AND INFINITE SERIES......Page 264
ORDINARY DIFFERENTIAL EQUATION......Page 265
ORTHOGONAL TRAJECTORY......Page 266
PARABOLIC EQUATION......Page 267
PARTIAL DIFFERENTIAL EQUATION......Page 268
POWER SERIES......Page 270
SEPARATION OF VARIABLES......Page 272
SINGULAR SOLUTION......Page 273
SINGULARITY......Page 274
SPECIAL FUNCTION......Page 275
SPIRAL......Page 277
STABILITY......Page 279
STURM-LIOUVILLE PROBLEM......Page 280
VARIATION OF PARAMETERS......Page 281
GLOSSARY......Page 283
NONTECHNICAL WORKS......Page 286
COMPLEX ANALYSIS......Page 287
ORDINARY DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS......Page 288
OTHER AREAS OF ANALYSIS......Page 289
INDEX......Page 290
BACK COVER......Page 296




نظرات کاربران