دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: DAVID W. RUSSELL
سری:
ISBN (شابک) : 9783030860684, 303086068X
ناشر: SPRINGER
سال نشر: 2021
تعداد صفحات: [278]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 Mb
در صورت تبدیل فایل کتاب the BOXES METHODOLOGY : black box control of ill -defined systems. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روش BOXES: کنترل جعبه سیاه سیستم های بد تعریف شده. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface References Acknowledgements Donald Michie: A Personal Appreciation Contents 1 Introduction 1.1 Machine Intelligence 1.1.1 Are Computers Intelligent? 1.1.2 Can Computers Learn? 1.1.3 The Robot and the Box 1.1.4 Does the BOXES Algorithm Learn? 1.1.5 Can Computers Think? 1.1.6 Does the BOXES Algorithm Think? 1.2 The Purpose of This Book 1.3 A Road Map to Reading This Book 1.4 Concluding Thoughts References Part I Learning and Artificial Intelligence (AI) 2 The Game Metaphor 2.1 Computers Can Be Programmed to Play Games 2.1.1 Playing by Rules 2.2 Reactionary Strategy Games 2.2.1 Noughts and Crosses 2.2.2 OXO Not Noughts and Crosses 2.3 Incentives and Learning Velocity 2.4 Design of a Noughts and Crosses Engine 2.4.1 Overview 2.4.2 Software Substructures 2.4.3 Typical Results 2.5 Chance and Trial and Error 2.5.1 Chance and the Community Chest 2.5.2 Learning with Guesswork 2.5.3 Random Initialization 2.5.4 Positional Move Strengths 2.6 The Payoff Matrix 2.7 The Signature Table 2.8 Rewards and Penalties 2.9 Failure-Driven Learning 2.10 Concluding Thoughts 2.10.1 Reversi (Othello®) 2.10.2 The BOXES Method as a Game References 3 Introduction to BOXES 3.1 Matchboxes 3.2 Components of the BOXES Method 3.2.1 Defining the Game Board 3.2.2 Identifying Game Situations 3.2.3 Selecting Game Piece Actions 3.2.4 Real-Time Data Handling 3.2.5 Detecting an End Game Situation 3.3 Updating the Signature Table 3.3.1 Overall Performance Data 3.3.2 Desired Level of Achievement 3.3.3 Individual Box Decision Data 3.4 Overall Software Design 3.5 Concluding Comments References 4 Dynamic Control as a Game 4.1 Control of Dynamic Systems 4.1.1 The Dynamic System Game Board 4.1.2 State Variables and State Integers 4.1.3 Creating a Unique System Integer 4.1.4 Signature Table Control 4.1.5 End of Game Action 4.2 Actual Real-Time Data Collection 4.2.1 Short Duration Mechanically Unstable Systems 4.2.2 Continuous Systems with Sample Data 4.3 Update Procedures 4.4 Concluding Comments References Part II The Trolley and Pole 5 Control of a Simulated Inverted Pendulum Using the BOXES Method 5.1 Introduction 5.2 The Trolley and Pole Model 5.2.1 The Trolley and Pole Signature Table 5.2.2 Systems Engineering 5.2.3 An Overall Performance Metric 5.2.4 The Importance of State Boundaries 5.2.5 Computation of a Unique System Integer 5.3 Simulation Software 5.3.1 The Campaign Setup Phase 5.3.2 The Individual Run Phase 5.4 Simulation Results 5.4.1 Typical Results 5.5 Update of Statistical Databases 5.5.1 Determination of Decision Strength 5.5.2 Near-Neighbor Advisor Cells 5.6 Conclusions References 6 The Liverpool Experiment 6.1 Introduction to Reality 6.2 The Liverpool Trolley and Pole Rig 6.2.1 Practical Aspects of the Liverpool System 6.2.2 Instrumentation and the State Variables 6.2.3 Manual Auto-start 6.2.4 Driving the Trolley 6.2.5 The Microprocessor 6.2.6 The BOXES Algorithm and the Real-Time Monitor 6.3 Systems Engineering 6.3.1 How Boundaries on Each State Variable Were Imposed 6.4 Results from the Liverpool Rig 6.5 Conclusions References 7 Solving the Auto-Start Dilemma 7.1 Introduction to the Auto-Start Dilemma 7.2 Random Restart Simulation Software 7.2.1 Restart Software 7.2.2 Random Initial State Integers 7.3 Automated Catch-Up Restart Method 7.3.1 Catch-Up Restart in Simulated Systems 7.3.2 Catch-Up Restart in a Real Trolley and Pole Rig 7.3.3 Catch-Up Method Conclusion 7.4 Systems Engineering 7.5 Manual Experiments 7.6 Conclusions References Part III Other BOXES Applications 8 Continuous System Control 8.1 Continuous Control 8.2 A Different Perspective on Failure 8.2.1 Constructive Failure 8.2.2 Limited Failure 8.2.3 Creating a Learning Interlude 8.3 Outcome-Based Performance Evaluation 8.3.1 An Example Outcome-Based Approach 8.3.2 Outcome-Based Assessment 8.4 Training Continuous Automata 8.5 BOXES Control of a Continuous System 8.5.1 PID Control 8.5.2 State Variable Control 8.5.3 BOXES for Continuous Systems 8.6 A BOXES Augmented Controller Results 8.6.1 Outcome-Based Reward and Penalty 8.6.2 Results Obtained for the Example 8.7 Conclusions References 9 Other On/Off Control Case Studies 9.1 On/Off Control 9.1.1 Learning Algorithms 9.1.2 Run Time Data 9.1.3 Signature Table Update 9.1.4 Application Summary 9.2 Fedbatch Fermentation 9.2.1 The Fedbatch Fermentation Process 9.2.2 A Fedbatch Fermentation Model 9.2.3 BOXES Control of a Fedbatch Fermentor 9.3 A Municipal Incinerator with BOXES Control 9.3.1 A Model of a Municipal Incinerator 9.3.2 BOXES Control of the Municipal Incinerator 9.4 Reversing a Tractor Trailer 9.4.1 Model of the Tractor Trailer 9.4.2 BOXES Control of Tractor Trailer Reversal 9.5 Conclusions References 10 Two Nonlinear Applications 10.1 Introduction 10.2 Database Access Forecasting 10.2.1 Application of BOXES to Disk Accessing 10.2.2 Learning in the Adapted BOXES Algorithm 10.2.3 Forecasting 10.2.4 Simulation Results 10.2.5 Conclusions Disk Accessing 10.3 Stabilizing Lorentz Chaos 10.3.1 Introduction 10.3.2 BOXES and the Fractal Dimension 10.3.3 Results for Lorenz Chaos Under BOXES Control 10.3.4 Conclusions Lorentz Equations 10.4 Conclusions References Part IV Extending the Algorithm 11 Accelerated Learning 11.1 Introduction 11.2 Preset Fixed Signature Table Values 11.3 Reduction of the Importance of Short Runs 11.4 Collaboration Among Cells 11.4.1 Playing Bridge 11.4.2 Swarm and Ant Colony Systems 11.4.3 Advisors in the BOXES Algorithm 11.4.4 Locating Peer Advisor States 11.5 Relocation of Boundaries 11.6 Conclusions References 12 Two Advising Paradigms 12.1 Introduction 12.1.1 Decision Strengths of Cells 12.1.2 Identification and Ranking of Advisor Cells 12.1.3 Advisor Strength Criteria 12.2 Advising Schemas 12.2.1 Advising by Voting 12.2.2 Advising Using Cell Strengths 12.2.3 Delayed Advising 12.3 Advisor Accountability 12.4 Conclusions References 13 Evolutionary Studies Research 13.1 Introduction 13.2 State Boundary Experiments 13.2.1 Variation in the Number and Size of State Zones 13.2.2 Preliminary Conclusions 13.3 An Evolutionary Paradigm 13.3.1 Types of Zones 13.3.2 An Evolutionary Method 13.3.3 Interpreting Signature Table Statistics 13.3.4 An Evolutionary Algorithm 13.3.5 Example Results 13.4 Conclusions References Part V Further Thoughts 14 A Priori Knowledge 14.1 What are Black Box Systems? 14.1.1 An Intelligent Pacemaker 14.1.2 Controlling a Steel Rolling Mill 14.1.3 Why Use the Cart-and-Pole Exemplar? 14.2 What does the BOXES Paradigm Need to Know? 14.2.1 The Physical System to be Controlled 14.2.2 The Division of the State Variables into Zones 14.3 Other BOXES Configuration Data Items 14.3.1 The Signature Table 14.3.2 Evaluating System Merit 14.3.3 In-Run Data Collection 14.3.4 The Cell Usage Database 14.3.5 Learning Parameters 14.4 Fixed Cell Strategies 14.4.1 Create Non-changeable States 14.4.2 Strong Cell Freezing 14.4.3 Can Fixed Cells Participate in Evolutionary Studies? 14.5 Conclusions References 15 Detecting and Handling Jitter 15.1 Introduction 15.2 Why Does Jittering Occur? 15.3 How Jitter Affects Merit 15.3.1 A Numerical Illustration 15.4 How Jittering Corrupts Individual Cell Data 15.5 Detection of Jittering in a BOXES System 15.6 Possible Strategies for Jitter Remediation 15.6.1 Executive Internal Action 15.6.2 Jitter Proof Software 15.7 Conclusions References 16 Handling Untrained Data 16.1 Glossary of Computational Terms 16.2 A Mathematical BOXES Test Engine 16.2.1 Scenario 1: Linear Increase or Decrease 16.2.2 Scenario 2: Linear Saw Tooth 16.2.3 Scenario 3: Complex or Random Pattern 16.3 Forgetfulness Observations Using the BOXES Test Engine 16.3.1 Aging Global Use (GU) 16.3.2 Aging Global Life (GL) 16.3.3 System Merit just Aging the Global Life (GL) 16.3.4 System Merit for a More Complex Scenario 16.3.5 Effect of Differing Values of Δk 16.3.6 Summary of δk as a Learning Agent 16.4 An Alternate Aging Strategy Using a FIFO Stack Architecture 16.4.1 The FIFO Data Structure 16.4.2 Application of the FIFO Stack to BOXES Merit 16.4.3 Connection of the Test Engine to the FIFO Stack 16.4.4 Merit Values Using the FIFO Stack 16.5 Conclusions References Part VI Conclusions 17 Summary and Conclusions 17.1 Some Philosophical Commentary 17.2 Bloom’s Taxonomy 17.3 Introduction and Part I: Learning and Artificial Intelligence 17.3.1 Chapter 1: Introduction 17.3.2 Chapter 2: The Game Metaphor 17.3.3 Chapter 3: Introduction to BOXES 17.3.4 Chapter 4: Dynamic Control as a Game 17.4 Part II: The Trolley and Pole 17.4.1 Chapter 5: Control of an Inverted Pendulum Using BOXES 17.4.2 Chapter 6: The Liverpool Experiment 17.4.3 Chapter 7: Solving the Auto-start Dilemma 17.5 Part III: Other BOXES Applications 17.5.1 Chapter 8: Continuous System Control 17.5.2 Chapter 9: Other On/Off Control Case Studies 17.5.3 Chapter 10: Two Nonlinear Applications 17.6 Part IV: Improving the Algorithm 17.6.1 Chapter 11: Accelerated Learning 17.6.2 Chapter 12: Two Advising Paradigms 17.6.3 Chapter 13: Evolutionary Studies Research 17.7 Part V: Further Thoughts 17.7.1 Chapter 14: A Priori Knowledge 17.7.2 Chapter 15: Detecting and Handling Jitter 17.7.3 Chapter 16: Handling Untrained Data 17.8 Modifications to Standard BOXES Software 17.9 Research Questions for Future Study 17.9.1 Is There an Optimal Number of States? 17.9.2 Is There a Generic Merit Formula? 17.9.3 Is There a Generic Cell Strength Formula? 17.10 Conclusions 17.10.1 Some More Final Thoughts References Appendix A Glossary of Terms and Abbreviations Appendix B BOXES Software Notes B.1 QB64: A Better Quickbasic B.2 Essentials of Simulation Software B.2.1 Housekeeping B.2.2 Auto-start B.2.3 Reset Inner Loop Variables B.2.4 Inner Loop Control B.2.5 Normalization of State Variables B.2.6 Calculation of System Integers B.2.7 Accessing the Signature Table B.2.8 Saving In-run Data B.2.9 Attaching the BOXES Controller B.2.10 State Equations of the System Model B.2.11 Numerical Integration B.2.12 Saving Global Data at the End of a Run B.2.13 Detecting and Avoiding Jitter B.3 Real-Time Software B.4 Conclusions Appendix C BOXES Publications, Lectures, and Presentations by the Author Author Biography Index