دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Karm Veer Arya (editor). Robin Singh Bhadoria (editor)
سری:
ISBN (شابک) : 0815393644, 9780815393641
ناشر: Chapman and Hall/CRC
سال نشر: 2019
تعداد صفحات: 305
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 22 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب The Biometric Computing: Recognition and Registration به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب محاسبات بیومتریک: شناسایی و ثبت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
\"محاسبات بیومتریک: شناسایی و ثبت\" معرفی بیومتریک به همراه تجزیه و تحلیل دقیق برای روش های شناسایی و تشخیص را ارائه می دهد. این کتاب بستر مورد نیاز برای درک محاسبات بیومتریک و اجرای آن برای ایمن سازی سیستم هدف را تشکیل می دهد. همچنین تجزیه و تحلیل جامعی در مورد الگوریتمها، معماریها و ارتباط بین رشتهای محاسبات بیومتریک به همراه مطالعات موردی دقیق برای نوزادان و فضاهای وضوح ارائه میکند. نقطه قوت این کتاب رویکرد منحصر به فرد آن است که با نحوه کار محاسبات بیومتریک برای تحقیق در مورد پارادایم ها شروع می شود و به تدریج به سمت پیشرفت آن حرکت می کند. این کتاب به سه بخش تقسیم میشود که شامل مبانی و تعاریف اساسی، الگوریتمها و روششناسی، و تحقیقات آیندهنگر و مطالعات موردی است.
ویژگیها:
p>این کتاب یک جلد ویرایش شده توسط محققان و متخصصان برجسته دعوت شده در سراسر جهان در زمینه بیومتریک است، به شرح پیشرفت اساسی و اخیر در تشخیص بیومتریک و ثبت استریشن این کتاب یک کتاب راهنمای تحقیقاتی کامل برای متخصصان جوانی است که قصد انجام تحقیقات خود را در زمینه محاسبات بیومتریک دارند و توسط متخصصان صنعت، دانشجویان فارغ التحصیل و محقق در زمینه علوم و مهندسی کامپیوتر مورد استفاده قرار خواهد گرفت.
"The Biometric Computing: Recognition & Registration" presents introduction of biometrics along with detailed analysis for identification and recognition methods. This book forms the required platform for understanding biometric computing and its implementation for securing target system. It also provides the comprehensive analysis on algorithms, architectures and interdisciplinary connection of biometric computing along with detailed case-studies for newborns and resolution spaces. The strength of this book is its unique approach starting with how biometric computing works to research paradigms and gradually moves towards its advancement. This book is divided into three parts that comprises basic fundamentals and definitions, algorithms and methodologies, and futuristic research and case studies.
Features:
This book is an edited volume by prominent invited researchers and practitioners around the globe in the field of biometrics, describes the fundamental and recent advancement in biometric recognition and registration. This book is a perfect research handbook for young practitioners who are intending to carry out their research in the field of Biometric Computing and will be used by industry professionals, graduate and researcher students in the field of computer science and engineering.
Cover Half Title Title Page Copyright Page Contents Preface Editors Contributors Part I: The Biometric Computing – Fundamentals & Definitions 1. Acquisition and Computation for Data in Biometric System 1.1 Introduction 1.2 Elements of Biometric System 1.2.1 Image Acquisition 1.2.2 Feature Extraction 1.2.3 Recognition 1.3 Performance Measures 1.4 Applications of Face Recognition 1.5 Image Acquisition Methods 1.5.1 Fingerprint Recognition Methods 1.5.2 Face Recognition 1.5.3 Iris Recognition 1.5.4 Multi-Biometrics 1.5.5 Hand Geometry 1.6 Conclusion References 2. Advances in Unconstrained Handprint Biometrics 2.1 Background 2.1.1 Palm Print and Knuckle Print Biometrics 2.1.1.1 Palm Print 2.1.1.2 Inner Knuckle Print 2.2 Related Works 2.3 Palm Print and Finger Knuckle Print Traditional Sensors 2.4 Proposed Single Sensor Single Shot Multi-Biometric System 2.4.1 Image Acquisition 2.4.2 Preprocessing Techniques 2.4.3 ROI Extraction 2.4.3.1 Palm Print ROI Extraction 2.4.3.2 Inner Knuckle Print ROI Extraction 2.4.4 Image Enhancement and Transformation 2.4.5 Feature Extraction and Matching 2.4.6 Two-Stage Fusion 2.5 Experimental Analysis and Evaluation Parameters 2.6 Conclusions References 3. Voiceprint-Based Biometric Template Identifications 3.1 Introduction 3.2 Related Work 3.2.1 Unsupervised Learning 3.2.2 Pronunciation Modeling 3.2.3 Phonetic Distance Measurements 3.3 Phoneme Substitution Cost Matrix 3.3.1 Classification of Phonemes Based on Articulatory Features 3.3.2 Phonetic Distance 3.3.3 Phonetic Distance Computations 3.4 Dynamic Phone Warping (DPW) 3.4.1 DPW Algorithm 3.4.2 Experimentation Details, Results and Analysis 3.5 Critical Distance Criteria 3.5.1 Definitions 3.5.2 Critical Distance Estimation (CDE) Algorithm 3.5.3 Experimentation 3.5.4 Results and Analysis 3.5.4.1 Estimation of Parameter γ 3.5.4.2 Estimation of Parameter δ 3.6 Biometric Template for Speaker Identification 3.6.1 Typical Speaker Recognition System 3.6.2 Speaker Recognition Models 3.6.2.1 Minimum-Distance Classifier Model 3.6.2.2 Acoustic Model 3.6.2.3 GMM Model 3.6.2.4 Hybrid HMM/VQ-Based Model 3.6.3 Pronunciation Voiceprint-Based Speaker Recognition Model 3.6.3.1 Preparation of Speaker Models 3.6.3.2 Speaker Identification 3.6.4 Speaker Recognition Algorithm 3.6.5 Experimentation Details 3.6.5.1 Data Sets Source and Sample Size 3.6.5.2 Experimental Setup 3.6.5.3 Experimentation Methodology 3.6.6 Results and Discussion 3.6.6.1 Speaker Models 3.6.6.2 Speaker Identification 3.7 Conclusions References 4. Behavioral Biometrics: A Prognostic Measure for Activity Recognition 4.1 Introduction to Behavioral Biometrics 4.2 Keystroke Dynamics 4.2.1 User Enrollment 4.2.2 Feature Extraction 4.2.3 Classification of Keystroke Dynamics 4.2.4 Public Database for Keystroke Dynamics 4.2.5 Commercial Applications 4.2.6 Limitations of Keystroke Biometrics 4.3 Speaker Recognition 4.3.1 User Enrollment 4.3.2 Voice Feature Extraction 4.3.3 Speaker Recognition Public Databases 4.4 Handwriting and Signature Recognition 4.4.1 Handwritten Text and Signature Public Databases 4.4.2 Feature Extraction 4.5 Computer-/Mobile Application-Based Behavioral Biometrics 4.6 Biomedical Signals as Biometrics 4.7 Conclusions References 5. Finger Biometric Recognition with Feature Selection 5.1 Introduction 5.1.1 Objectives 5.2 Related Works 5.3 Preprocessing Methodology of Finger Geometry 5.3.1 Elementary Preprocessing of Hand Image 5.3.2 Finger Segmentation 5.3.3 Geometric Feature Set Computation 5.4 Feature Selection Algorithms 5.5 Experimentation 5.5.1 Database Description 5.5.2 Classifier Description 5.5.3 Experimental Description 5.5.3.1 Identification 5.5.3.2 Feature Overfittting 5.5.3.3 Verification 5.6 Conclusion Acknowledgment References Part II: The Biometric Computing – Algorithms & Methodologies 6. Iris Recognition Systems in a Non-Cooperative Environment 6.1 Introduction 6.2 Iris Recognition Systems from Images and Video 6.2.1 Segmentation Iris Texture Region 6.2.1.1 Viterbi-Based Segmentation Algorithm 6.2.1.2 Contrast-Adjusted Hough Transform Segmentation Algorithm 6.2.1.3 Weighted Adaptive Hough and Ellipsopolar Transform 6.2.1.4 Modified Hough Transform Segmentation Algorithm 6.2.2 Normalization Process 6.2.3 Iris Image Fusion 6.2.4 Features Iris Texture 6.2.4.1 Taxonomy of Iris Feature Extraction Methods 6.2.4.2 Statistical Methods 6.2.4.3 Signal Processing Methods 6.2.4.4 Combined Methods 6.2.4.5 Feature Learning Methods 6.3 Databases in a Non-Cooperative Environments 6.3.1 CASIA-V3-Interval 6.3.2 CASIA-V4-Thousand 6.3.3 UBIRIS-V1 6.3.4 Multiple Biometrics Grand Challenge MBGC 6.4 Experimental Results in Iris Recognition Systems in a Non-Cooperative Environments 6.4.1 Fusion Segmentation and Quality Evaluation as Part of Iris Recognition System in Non-Cooperative Environments 6.4.2 Perspectives of the Use of Deep Neural Networks in the Improvement of the Accuracy of Iris Biometric Systems 6.5 Conclusion Acknowledgments References 7. Slap Fingerprint Authentication and Its Limitations 7.1 Introduction 7.2 State of the Art 7.2.1 Working of a Biometric System 7.2.2 Performance Evaluation 7.2.2.1 Performance Evaluation in Verification 7.2.3 Performance Evaluation in Identification 7.3 Slap Image Authentication 7.3.1 Slap Segmentation 7.3.1.1 Framework of Slap Segmentation 7.3.1.2 Existing Approaches 7.3.1.3 Challenges in Component Detection 7.3.1.4 Challenges in Fingerprint Component Detection 7.3.1.5 Challenges in Hand Detection 7.3.2 Single Fingerprint Matching 7.3.2.1 Existing Approaches 7.3.2.2 Challenges 7.3.3 Fusion 7.4 Future Research Directions 7.5 Conclusions References 8. The Reality of People Re-Identification Task, Where We Are and Where We Are Going: A Review 8.1 Introduction 8.1.1 Person Re-Identification Formalization 8.2 Evaluation Datasets 8.3 Current Approaches 8.3.1 Feature Representation 8.3.1.1 Appearance-Based Models 8.3.1.2 Motion-Based Models 8.3.1.3 Biometrics-Based Models 8.3.1.4 Spatiotemporal Features 8.3.2 Distance Metrics or Learning Metrics 8.4 Systems Evaluation and Discussion 8.4.1 VIPeR Dataset Results 8.4.2 ETHZ Dataset Results 8.4.3 iLIDS Dataset Results 8.4.4 CAVIAR4REID Dataset Results 8.4.5 GRID Dataset Results 8.4.6 CUHK01 Dataset Results 8.4.7 Market-1501 Dataset Results 8.4.8 PRID2011 Dataset Results 8.4.9 PRID450S Dataset Results 8.5 Discussion and Conclusions References 9. Optimization of SVM-Based Hand Gesture Recognition System Using Particle Swarm Optimization and Plant Growth Simulation Algorithm 9.1 Introduction 9.1.1 Background 9.1.2 Significance 9.2 Literature Survey 9.2.1 Survey on Database 9.2.2 Survey on Feature Extraction 9.2.3 Survey on Classification 9.2.4 Survey on Optimization-Based Hand Gesture Recognition 9.3 Methodology 9.3.1 Image Database 9.3.2 Image Preprocessing 9.3.3 Feature Extraction 9.3.4 Classification 9.3.5 Optimization 9.3.5.1 Particle Swarm Optimization (PSO) 9.3.5.2 Plant Growth Simulation Algorithm (PGSA) 9.4 Result and Discussion 9.5 Conclusions References 10. Internet of Biometric Things: Standardization Activities and Frameworks 10.1 Introduction 10.1.1 Biometrics Technology Evolution 10.1.2 Biometrics Signals Processing 10.2 Biometrics Technology and Internet of Things 10.2.1 Influence of IoT on the Development of Biometrics Technology 10.2.2 Role of Cloud Computing 10.2.3 Biometric Sensors 10.3 Internet of Biometric Things 10.3.1 IoBT Devices 10.3.2 Examples of Cloud-Centric Benefits 10.3.3 Behavioral Analytics Based on Multimedia Content 10.4 Internet of Multimedia Things 10.4.1 Multimedia Communication in IoMT 10.4.2 IoMT Standardization Process 10.5 Conclusions References Part III: The Biometric Computing – Futuristic Research & Case Studies 11. Deep Neural Networks for Biometric Identification Based on Non-Intrusive ECG Acquisitions 11.1 Introduction 11.2 State-of-the-Art Overview 11.2.1 ECG-Based Biometrics 11.2.2 Deep Learning for Signals and Biometrics 11.3 A CNN for ECG Biometrics 11.3.1 General Structure Overview 11.3.2 Convolutional and Pooling Layers 11.3.3 Fully Connected Layers 11.3.4 Optimization and Regularization 11.3.4.1 Optimizer and Loss 11.3.4.2 Dropout 11.3.4.3 Data Augmentation 11.4 Baseline Algorithm 11.5 Results and Benchmarking 11.6 Conclusion Acknowledgments References 12. Recent Advances in Biometric Recognition for Newborns 12.1 Introduction 12.2 State-of-the-Art 12.3 Current Technological Response and Its Limitations 12.4 Newborn Recognition Techniques 12.4.1 RFID Bracelets 12.4.2 Medical Techniques 12.4.3 Footprint 12.4.4 Face Identification 12.4.5 Fingerprints 12.4.6 Palmprint 12.4.7 Ear 12.4.8 Iris Recognition 12.4.9 Soft Biometrics 12.5 Multimodal Biometrics for Newborn Recognition 12.6 Proposed Framework and Future Work 12.7 Conclusions References 13. Paradigms of Artificial Intelligence in Biometric Computing 13.1 Introduction 13.2 Types of Biometric Technologies 13.2.1 Fingerprint Recognition 13.2.2 Face Recognition 13.2.3 Voice Recognition 13.2.4 Iris Recognition 13.2.5 Handwriting and Signature Recognition 13.2.6 Behavioral Recognition 13.3 Artificial Intelligence in Biometric Applications 13.3.1 Artificial Neural Network 13.3.2 Support Vector Machine 13.4 Performance Metrics for Testing the Biometric System 13.5 Conclusion References 14. Face Recognition in Low-Resolution Space 14.1 Introduction 14.2 Low-Resolution Face Recognition Problem 14.3 Solutions of Low-Resolution Face Recognition Problem 14.4 Literature Review 14.4.1 SR-Based Methods 14.4.2 UFS-Based Methods 14.5 Low-Resolution Face Recognition System via SR Technique 14.5.1 Image Super-Resolution 14.6 Feature Extraction 14.7 Face Recognition 14.8 Results and Discussions 14.8.1 Experimental Results on the LFW Database 14.8.2 Experimental Results on the ORL Database 14.8.3 Experimental Results on the AR Database 14.8.4 Experimental Results on the EYB Database 14.9 Conclusion References Index