دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Abdo Abou Jaoudé
سری:
ISBN (شابک) : 152753703X, 9781527537033
ناشر: Cambridge Scholars Publishing
سال نشر: 2019
تعداد صفحات: [621]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 Mb
در صورت تبدیل فایل کتاب The Analysis of Selected Algorithms for the Stochastic Paradigm به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل الگوریتم های منتخب برای پارادایم تصادفی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب الگوریتمهای منتخب را برای پدیدههای تصادفی و تصادفی در حوزههای احتمال پایه، متغیرهای تصادفی، انتظارات ریاضی، احتمالهای خاص و توزیعهای آماری، فرآیندهای تصادفی و زنجیرههای مارکوف تحلیل میکند. همچنین یک رویکرد بدیع با عنوان «پارادایم احتمال پیچیده» ارائه میکند و آن را برای حرکت براونی به کار میبرد. به این ترتیب، این کتاب مورد توجه همه محققان، محققان و دانشجویان کارشناسی و کارشناسی ارشد در ریاضیات، علوم کامپیوتر و به طور کلی علوم خواهد بود.
This book analyses selected algorithms for random and stochastic phenomena in the areas of basic probability, random variables, mathematical expectation, special probability and statistical distributions, random processes, and Markov chains. It also presents a novel approach, titled the â oeComplex Probability Paradigmâ , and applies it to the Brownian motion. As such, the book will be of interest to all scholars, researchers, and undergraduate and graduate students in mathematics, computer science, and science in general.
Table of Contents Preface Chapter I Chapter II I- Simulation II- The Monté Carlo Methods III- Random Numbers Generators IV- Matrices 1- Definition 2- Matrix Addition and Subtraction 3- Scalar Multiplication 4- Matrix Multiplication 5- Matrix Transposition 6- Symmetric Matrix; Skew-Symmetric Matrix 7- Identity Matrix 8- Null Matrix V- Numerical Methods 1- Gauss-Jordan Method of Elimination to Solve a Linear System 2- Gauss-Jordan Method with Pivoting 3- Gauss-Jordan Method of Inversion 4- Overdetermined Systems VI- Complex Numbers 1- The Complex Number System 2- Fundamental Operations with Complex Numbers 3- Absolute Value 4- Graphical Representation of Complex Numbers 5- Vector Interpretation of Complex Numbers 6- Leonhard Euler’s Formula and Abraham De Moivre’s Theorem VII- Conclusion Chapter III I- Introduction II- The Theory III- Problems, Applications, and Algorithms 1- The Cards Problem 2- The First Box Problem 3- The First Two Boxes P 4- The First Bayes’ Problem 5- The Second Bayes’ Problem 6- The Second Box Problem 7- The Coin Problem 8- The Poker Problem 9- The Fair Die Problem 10- The Biased Die Problem 11- The Books Problem 12- The Chess Problem 13- The Two Players Problem 14- The Principle of Inclusion and Exclusion Problem 15- The Birthday Problem 16- The Second Two Boxes Problem 17- The Bose-Einstein Problem 18- The Fermi-Dirac Problem 19- The Two Purses Problem 20- The Bag Problem 21- The Letters Problem 22- The Yahtzee Problem 23- The Strange Dice Problem 24- The Equation Problem 25- The De Moivre Problem 26- The Huyghens Problem 27- The Bernoulli Problem 28- The De Meré Problem 29- The Domino Problem IV- Conclusion Chapter IV I- The Theory 1- Random Variables 2- Discrete Probability Distributions 3- Distribution Functions for Random Variables 4- Distribution Functions for Discrete Random Variables 5- Continuous Random Variables 6- Graphical Interpretations 7- Joint Distributions 7-1- Discrete Case 7-2- Continuous Case 8- Independent Random Variables 9- Conditional Distributions 10- Applications to Geometric Probability II- Problems, Applications, and Algorithms 1- The Coin Algorithm 2- The Second Coin Algorithm 3- The Continuous Random Variable Algorithm 4- The Joint Distribution Algorithm Chapter V I- The Theory 1- Definition of Mathematical Expectation 2- Some Theorems on Expectation 3- The Variance and Standard Deviation 4- The Standardized Random Variables 5- Moments 6- Variance for Joint Distributions. Covariance 7- Correlation Coefficient 8- Chebyshev’s Inequality 9- Law of Large Numbers 10- Other Measures of Central Tendency 10-1- Mode 10-2- Median 11- Skewness and Kurtosis 11-1- Skewness 11-2- Kurtosis II- Problems, Applications, and Algorithms 1- The First Algorithm: Mathematical Expectation 2- The Second Algorithm: Mathematical Expectation (Joint Distribution) Chapter VI I- Introduction II- The Discrete Probability Distributions 1- The Binomial Distribution 2- The Geometric Distribution 3- The Pascal’s or Negative Binomial Distribution 4- The Hypergeometric Distribution III- The Continuous Probability Distributions 1- The Normal Distribution 2- The Standard Normal Distribution 3- The Bivariate Normal Distribution 4- The Gamma and Exponential Distributions 5- The Chi-Squared Distribution 6- The Cauchy Distribution 7- The Laplace Distribution 8- The Maxwell Distribution 9- The Student t-Distribution 10- The Fisher F-Distribution IV- Conclusion Chapter VII I- Introduction II- The Theory 1- Random Processes 1-1- Definition 1-2- Description of A Random Process 2- Characterization of Random Processes 2-1- Probabilistic Descriptions 2-2- Mean, Correlation, and Covariance Functions 3- Classification of Random Processes III- Problems, Applications, and Algorithms 1- The Simple Random Walk Problem 2- The Random Walk of a Particle Problem 3- The Random Walk of a Drunkard Problem Chapter VIII I- Introduction II- The Theory 1- Definition of a Markov Chain 2- The Initial Probability Distribution 3- The Probability Vector 4- The Probability of Passing from State i to State j in n Stages 5- Regular Markov Chain 6- Long-Term Behavior of a Regular Markov Chain 7- Absorbing State; Absorbing Markov Chain 8- The Fundamental Matrix of an Absorbing Markov Chain 9- The Expected Number of Steps Before Absorption 10- The Probability of Being Absorbed 11- The Average Time Between Visits III- Problems, Applications, and Algorithms 1- Markov Chains and Transition Matrices Pro 2- Regular Markov Chains Program 3- Absorbing Markov Chains Program 4- Absorbing Markov Chains – The Gambler’s Ruin Program 5- Absorbing Markov Chains – The Rise and Fall of Stock Prices Program Chapter IX I- Introduction II- Nomenclature III- Historical Review IV- Albert Einstein’s Contribution V- The Purpose and the Advantages of the Present Work VI- The Complex Probability Paradigm VI-1- The Original Andrey Nikolaevich Kolmogorov System of Axioms VI-2- Adding the Imaginary Part M VI-3- The Purpose of Extending the Axioms VII- The New Paradigm and the Diffusion Equation VIII- The Evolution of Pc, DOK, Chf, and MChf IX- A Numerical Example X- Flowchart of the Complex Probability Paradigm XI- Simulation of the New Paradigm XI-1- The Paradigm Functions Analysis For t = 3000 seconds XI-1-1- The Complex Probability Cubes XI-2- The Paradigm Functions Analysis For t = 1000 seconds XI-3- The Paradigm Functions Analysis For t = 100 seconds XII- The New Paradigm and Entropy XIII- The Resultant Complex Random Vector Z XIII-1- The Resultant Complex Random Vector Z of a General Bernoulli Distribution XIII-2- The General Case: A Discrete Distribution with N Equiprobable Random Vectors XIII-3- The Resultant Complex Random Vector Z and The Law of Large Numbers XIV- The Complex Characteristics of the Probability Distributions XIV-1- The Expectation in C = R + M XIV-1-1- The General Probability Distribution Case XIV-1-2- The General Bernoulli Distribution Case XIV-2- The Variance in C XIV-3- A Numerical Example of a Bernoulli Distribution XV- Numerical Simulations XVI- Conclusion and Perspectives XVII- The Algorithms Chapter X Bibliography and References